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ELECTRICIAN :—* There i3 not in the entire annals of scientific research a more
eom(ﬁlewl 'l.xleal and philosophical method recorded than that which has bheen
rigidly adhered to by Hertz from start to finish. We can conceive of no more delight-
ful intellectual treat than following up the charming orderliness of the records in the

es before us. . . . The researches are a splendid consummation of the efforts which

have been made since the time of Maxwell to establish the doctrine of one ether for
all energy and force propagation—light, heat, electricity, and magnetism. The original
pers, with their introduction, form a lasting moununient of the work thus achieved.
e able translation before us, In which we have s skilful blend of the original mnean-
ing with the English idiom, and which is copiously illustrated, ee the record of
these researches within the reach of the Englis| ing public, and enables it to study
this important and epoch-making landmark in the progress of Physical Science.”

MISCELLANEOUS PAPERS.

With an Introduction by P. LENARD. Translated by
D. E. JonEs and G. A. ScHOTT.
8vo. 10s. net.

NATURE :—** Prof. Lenard has earned much gratitude for his Introduction. It
gives a channing picture of Hertz, of his simplicity, his devotion to science, his loving
regard for his parents. There is just enough added to the very well-selected letters to
ﬁive the reader a continuous view of Hertz's work, and enable him to follow its

evelopment, and hence feel an interest in it and sympathy with the worker, thus
fulfilling the best ideal of the biographer.”

KENOWLEDGE :—* The volume commands a place in the library of every institu-
tion and individual interested in physical research. It is a monument to a scientific
genius, and as an example of translation it will be difficult to excel.”

ELECTRICAL REVIEW :—“If a work is to be judged by its fruit, it would be
difficult to name a series of more valuable contributions to physical science than those
made by the lamented Hertz. . . . The book has been well done into English by the
translators. It contains very little trace of the heaviness that is generally felt about
translations from the German, a circumstance for which we have no doubt to thank the
skill of the translators as much as the style of the author.”
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EDITOR’S PREFACE

THE volume now published is Heinrich Hertz's last work. To
it he devoted the last three years of his life. The general
features were settled and the greater part of the book written
within about a year; the remaining two years were spent in
working up the details. At the end of this time the author
regarded the first part of the book as quite finished, and the second
half as practically finished. He had arranged to work once more
through the second half. But soon his plans became only
hopes, and his hopes were doomed to disappointment. Death
was soon to claim him in the prime of his power. Shortly
before he died he forwarded to the publishers the greater
part of the manuscript. At the same time he sent for me and
asked me to edit the book, in case he should not be able to see
it through the press.

From first t6 last I have done this with the greatest care,
seeking especially to give a faithful rendering of the sense of
the original. I have also-endeavoured, as far as possible, to
retain the form; but to do this in all cases, without due
reference to the contents and connection, would have been
contrary to the author’s wish. Hence I have slightly changed
the form in places where, after careful study of the book, I
felt convinced that the author would himself have made such
changes. I have not thought it necessary to ‘specify where
these changes occur, inasmuch as none of them affect the sense.
In order to guard against this I have carefully studied all the
rough notes and earlier manuseripts of the work. Several of
the first drafts had been carefully written out, and some of

303492
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them are fuller than the manusecript as finally prepared for the
press. With regard to two paragraphs of the work I have
found it impossible to satisfy myself, the author’s intention as
to the final form having remained doubtful to me. I have
marked these two paragraphs and have thought it best to leave
them entirely unaltered.

After sending off the manuscript the author had noted
certain corrections in a second copy; all these have been
included before printing off. I have completed the references
to earlier paragraphs of the book (of which few were given in
the second part, and scarcely any in the last chapter), and
have drawn up an index to the definitions and notation.

P. LENARD.

TRANSLATORS’ NOTE

HERTZ'S Principles of Mechanics forms the third (and last)
volume of his collected works, as edited by Dr. Philipp Lenard.
English translations of the first and second volumes (Miscel-
laneous Papers and Electric Waves) have already been published.

The translation of the first two volumes was comparatively
eagy ; the third has proved to be a more difficult undertaking.
If it has been brought to a satisfactory conclusion this will be
largely due to Professor Lenard, through whose hands the
proof-sheets have passed. He has again, notwithstanding the
pressure of other work, been good enough to advise and assist
us from time to time, and we tender to him our warmest
thanks.

We also desire to thank the publishers and printers for
the extreme consideration shown by them while the book was
being prepared for the press.

D.E J

J.T.W.
September 1899.
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PREFACE BY H. VON HELMHOLTZ

OX the 1st of January 1894 Heinrich Hertz died. All who
regard human progress as consisting in the broadest possible
development of the intellectual faculties, and in the victory of
the intellect over natural passions as well as over the forces of
nature, must have heard with the deepest sorrow of the death
of this highly favoured genius. Endowed with the rarest gifts
of intellect and of character, he reaped during his lifetime (alas,
so short {) & bounteous harvest which many of the most gifted
investigators of the present century have tried in vain to
gather. In old classical times it would have been said that
he had fallen a victim to the envy of the gods. Here nature
and fate appeared to have favoured in an exceptional manner
the development of a human intellect embracing all that was
requisite for the solution of the most difficult problems of
science,—an intellect capable of the greatest acuteness and

- clearness in logical thought, as well as of the closest attention in

observing apparently insignificant phenomena. The uninitiated
readily pass these by without heeding them ; but to the practised
eye they point the way by which we can penetrate into the
secrets of nature.

Heinrich Hertz seemed to be predestined to open up to
mankind many of the secrets which nature has hitherto con-
cealed from us; but all these hopes were frustrated by the
malignant disease which, creeping slowly but surely on, robbed
us of this precious life and of the achievements which it
promised. :

To me this has been a deep sorrow; for amongst all my
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pupils I have ever regarded Hertz as the one who had pene-
trated furthest into my own circle of scientific thought, and it
was to him that I looked with the greatest confidence for the
further development and extension of my work.

Heinrich Rudolf Hertz was born on 22nd February 1857,
in Hamburg, and was the eldest son of Dr. Hertz, who was
then a barrister and subsequently became senator. Up to the
time of his confirmation he was a pupil in one of the munici-
pal primary schools (Biirgerschulen). After a year’s prepara-
tion at home he entered the High School of his native
town, the Jokanneum ; here he remained until 1875, when he
received his certificate of matriculation. As a boy he won
the appreciation of his parents and teachers by his high
moral character. Already his pursuits showed his natural
inclinations. While still attending school he worked of his
own accord at the bench and lathe, on Sundays he attended
the Trade School to practise geometrical drawing, and with
the simplest appliances he constructed serviceable optical and
mechanical instruments.

At the end of his school course he had to decide on his career,
and chose that of an engineer. The modesty which in later years
was such a characteristic feature of his nature, seems to have
made him doubtful of his talent for theoretical science. He
liked mechanical work, and felt surer of success in connec-
tion with it, because he already knew well enough what it
meant and what it required. Perhaps, too, he was influenced
by the tone prevailing in his native town and tending towards
a practical life. It is in young men of unusual capacity that
one most frequently observes this sort of timid modesty. They
have a clear conception of the difficulties which have to be
overcome before attaining the high ideal set before their minds;
their strength must be tried by some practical test before they
can secure the self-reliance requisite for their difficult task.
And even in later years men of great ability are the less con-
tent with their own achievements the higher their capacity
and ideals. The most gifted attain the highest and truest
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success because they are most keenly alive to the presence of
imperfection and most unwearied in removing it.

For fully two years Heinrich Hertz remained in this state
of doubt. Then, in the autumn of 1877, he decided upon an
academic career; for as he grew in knowledge he grew in
the conviction that only in scientific work could he find en-
during satisfaction. In the autumn of 1878 he came to Berlin,
and it was as an university student there, in the physical
laboratory under my control, that I first made his acquaintance.
Even while he was going through the elementary course of
practical work, I saw that I had here to deal with a pupil
of quite unusual talent; and when, towards the end of the
summer semester, it fell to me to propound to the students
a subject of physical research for a prize, I chose one in
electromagnetics, in the belief that Hertz would feel an interest
in it, and would attack it, as he did, with success.

In Germany at that time the laws of electromagnetics were
deduced by most physicists from the hypothesis of W. Weber,
who sought to trace back electric and magnetic phenomena
to a modification of Newton’s assumption of direct forces
acting at a distance and in a straight line. With increasing
distance these forces diminish in accordance with the same
laws as those assigned by Newton to the force of gravitation,
and held by Coulomb to apply to the action between pairs
of electrified particles. The force was directly proportional to
the product of the two quantities of electricity, and inversely
proportional to the square of their distance apart; like quanti-
ties produced repulsion, unlike quantities attraction. ~Further-
more, in Weber's hypothesis it was assumed that this force
was propagated through infinite space instantaneously, and with
infinite velocity. The only difference between the views of
‘W. Weber and of Coulomb consisted in this—that Weber
assumed that the magnitude of the force between the two
quantities of electricity might be affected by the velocity with
which the two quantities approached towards or receded from
one another, and also by the acceleration of such velocity.
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Side by side with Weber’s theory there existed a number of
others, all of which had this in common—that they regarded
the magnitude of the force expressed by Coulomb’s law as
being modified by the influence of some component of the
velocity of the electrical quantities in motion. Such theories
were advanced by F. E. Neumann, by his son C. Neumann, by
Riemann, Grassmann, and subsequently by Clausius. Magnet-
ised molecules were regarded as the axes of circular electric
" currents, in accordance with an analogy between their external
effects previously discovered by Ampére.

This plentiful crop of hypotheses had become very un-
manageable, and in dealing with them it was necessary to go
through complicated calculations, resolutions of forces into their
components in various directions, and so on. So at that time
the domain of electromagnetics had become a pathless wilder-
ness. Observed facts and deductions from exceedingly doubt-
ful theories were inextricably mixed up together. With the
object of clearing up this confusion I had set myself the task
of surveying the region of electromagnetics, and of working
out the distinctive consequences of the various theories, in
order, wherever that was possible, to decide between them by
suitable experiments.

I arrived at the following general result. The phenomena
which completely closed currents produce by their circulation
through continuous and closed metallic circuits, and which
have this common property, that while they flow there is no
considerable variation in the electric charges accumulated
upon the various parts of the conductor,—all these phenomena
can be equally well deduced from any of the above-mentioned
hypotheses. The deductions which follow from them agree
with Ampére’s laws of electromagnetic action, with the laws
discovered by Faraday and Lenz, and also with the laws of
induced electric currents as generalised by F. E. Neumann.
On the other hand, the deductions which follow from them in
the case of conducting circuits which are not completely closed
are essentially different. The accordance between the various
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theories and the facts which have been observed in the case of
completely closed circuits is easily intelligible when we con-
sider that closed currents of any desired strength can be main-
tained as long as we please—at any rate long enough to allow
the forces exerted by them to exhibit plainly their effects;
and that on this account the actual effects of such currents and
their laws are well known and have been carefully investigated.
Thus any divergence between any newly-advanced theory and
any one of the known facts in this well-trodden region would
soon attract attention and be used to disprove the theory.

But at the open ends of unclosed conductors between which
insulating masses are interposed, every motion of electricity
along the length of the conductor immediately causes an
accumulation of electric charges; these are due to the surging
of the electricity, which cannot force its way through the
insulator, against the ends of the conductor. Between the
electricity accumulated at the end and the electricity of the
same kind which surges against it there is a force of repulsion ;
and an exceedingly short time suffices for this force to attain
such magnitude that it completely checks the flow of the
electricity. The surging then ceases; and after an instant
of rest there follows a resurging of the accumulated electricity
in the opposite direction.

To every one who was initiated into these matters it was
then apparent that a complete understanding of the theory of
electromagnetic phenomena could only be attained by a thorough
investigation of the processes which occur during these very
rapid surgings of unclosed currents. 'W. Weber had endeavoured
to remove or lessen certain difficulties in his electromagnetic
hypothesis by suggesting that electricity might possess a certain
degree of inertia, such as ponderable matter exhibits. In the
opening and closing of every electric current effects are pro-
duced which simulate the appearance of such electric inertia.
These, however, arise from what is called electromagnetic in-
duction, .. from a mutual action of neighbouring conductors
upon each other, according to laws which have been well known
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since Faraday’s time. True inertia should be proportional
only to the mass of the electricity in motion, and independent
of the position of the conductor. If anything of the kind
existed we ought to be able to detect it by a retardation in
electric oscillations, such as are produced by the sudden break
of an electric current in metallic wires. In this manner it
should be possible to find an upper limit to the magnitude of
this electric inertia; and so I was led to propound the problem
of carrying out experiments on the magnitude of extra-currents.
Extra-currents in double-wound spirals, the currents traversing
the branches in opposite directions, were suggested in the
statement of the problem as being apparently best adapted for
these experiments. Heinrich Hertz’s first research of im-
portance consisted in solving this problem. In it he gives a
definite answer to the question propounded, and shows that of
the extra-current in a double-wound spiral 4k; to o4 at most
could be ascribed to the effect of an inertia of electricity. The
prize was awarded to him for this investigation.

But Hertz did not confine himself to the experiments which
had been suggested. For he recognised that although the
effects of induction are very much weaker in wires which are -
stretched out straight, they can be much more accurately calcu-
lated than in spirals of many turns; for in the latter he could
not measure with accuracy the geometrical relations. Hence he
used for further experiments a conductor comsisting of two
rectangles of straight wire ; he now found that the extra-current
due to inertia could at most not exceed 3} of the magnitude
of the induction current.

Investigations on the effect of centrifugal force in a rapidly
rotating plate upon the motion of electricity passing through
it, led him to find a still lower value to the upper limit of the
inertia of electricity.

These experiments clearly impressed upon his mind the
exceeding mobility of electricity, and pointed out to him the
way towards his most important discoveries.

Meanwhile in England the ideas introduced by Faraday as
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to the nature of electricity were extending. These ideas, ex-
pressed as they were in abstract language difficult of compre-
hension, made but slow progress until they found in Clerk
Maxwell a fitting interpreter. In explaining electrical pheno-
mena Faraday was bent upon excluding all preconceived notions
involving assumptions as to the existence of phenomena or
substances which could not be directly perceived. Especially
did he reject, as did Newton at the beginning of his career, the
hypothesis of the existence of action-at-a-distance. What the
older theories assumed seemed to him inconceivable—that
direct actions could go on between bodies separated in space
without any change taking place in the intervening medium.
So he first sought for indications of changes in media lying
between electrified bodies or between magnetic bodies. He
succeeded in detecting magnetism or diamagnetism in nearly
all the bodies which up to that time had been regarded as non-
magnetic. He also showed that good insulators undergo a
change when exposed to the action of electric force; this he
denoted as the “dielectric polarisation of insulators.”

It could not be denied that the attraction between two
electrically charged bodies or between two magnet poles in the
direction of their lines of force was considerably increased by
introducing between them dielectrically or magnetically
polarised media. On .the other hand there was a repulsion
across the lines of force. After these discoveries men were
bound to recognise that a part of the magmetic and electric
action was produced by the polarisation of the intervening
medium ; another part might still remain, and this might be
due to action-at-a-distance.

Faraday and Maxwell inclined towards the simpler view
that there was no action-at-a-distance ; this hypothesis, which
involved a complete upsetting of the conceptions hitherto
current, was thrown into mathematical form and developed by
Maxwell. According to it the seat of the changes which pro-
duce electrical phenomena must be sought only in the insu-
lators; the polarisation and depolarisation of these are the
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real causes of the electrical disturbances which apparently take
place in conductors. There were no longer any closed currents ;
for the accumulation of electric charges at the ends of a con-
ductor, and the simultaneous dielectric polarisation of the
medium between them, represented an equivalent electric
motion in the intervening dielectric, thus completing the gap
in the circuit. '

Faraday had a very sure and profound insight into geo-
metrical and mechanical questions; and he had already recog-
nised that the distribution of electric action in space according
to these new views must exactly agree with that found accord-
ing to the older theory.

By the aid of mathematical analysis Maxwell confirmed
this, and extended it into a complete theory of electro-
magnetics. For my own part, I fully recognised the force of
the facts discovered by Faraday, and began to investigate the
question whether actions-at-a-distance did really exist, and
whether they must be taken into account. For I felt that
scientific prudence required one to keep an open mind at first
in such a complicated matter, and that the doubt might point
the way to decisive experiments.

This was the state of the question at the time when
Heinrich Hertz attacked it after completing the investigation’
which we have described.

It was an essential postulate of Maxwell’s theory that the
polarisation and depolarisation of an insulator should produce
in its neighbourhood the same electromagnetic effects as a
galvanic current in a conductor. It seemed to me that this
should be capable of demonstration, and that it would consti-
tute a problem of sufficient importance for one of the great
prizes of the Berlin Academy.

In the Introduction to his interesting book, Untersuchungen
tiber die Austreibung der elektrischen Kraft! Hertz has de-
scribed how his own discoveries grew out of the seeds thus

1 [Electric Waves. London, Macmillan, 1898.]
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sown by his contemporaries, and has dome this in such an
admirably clear manner that it is impossible for any one else
to improve upon it or add anything of importance. His
Introduction is of exceeding value as a perfectly frank and full
account of onme of the most important and suggestive dis-
coveries, It is a pity that we do not possess more documents
of this kind on the inner psychological history of science. We
owe the author a debt of gratitude for allowing us to penetrate
into the inmost working of his thoughts, and for recording
even his temporary mistakes.

Something may, however, be added as to the consequences
which follow from his discoveries.

The views which Hertz subsequently proved to be correct
had been propounded, as we have already said, by Faraday
and Maxwell before him as being possible, and even highly
probable; but as yet they had not been actually verified.
Hertz supplied the demonstration. The phenomena which
guided him into the path of success were exceedingly insignifi-
cant, and could only have attracted the attention of an observer
who was unusually acute, and able to see immediately the full
importance of an unexpected phenomenon which others had
passed by. It would have been a hopeless task to render visible
by means of a galvanometer, or by any other experimental
method in use at that time, the rapid oscillations of currents
having a period as short as one ten-thousandth or even only a
millionth of a second. For all finite forces require a certain
time to produce finite velocities and to displace bodies of any
weight, even when they are as light as the magnetic needles of
our galvanometers usually are. But electric sparks can become
visible between the ends of a conductor even when the poten-
tial at its ends only rises for a millionth of a second high
enough to cause sparking across a minute air-gap. Through
his earlier investigations Hertz was thoroughly familiar with
the regularity and enormous velocity of these rapid electric
oscillations ; and when he essayed in this way to discover and
render visible the most transient electric disturbances, success
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was not long in coming. He very soon discovered what were
the conditions under which he could produce in unclosed con-
ductors oscillations of sufficient regularity. He proceeded to
examine their behaviour under the most varied circumstances,
and thus determined the laws of their development. He next
succeeded in measuring their wave-length in air and their
velocity. In the whole investigation one scarcely knows
which to admire most, his experimental skill or the acuteness
of his reasoning, so happily are the two combined.

By these investigations Hertz has enriched physics with
new and most interesting views respecting natural phenomena.
There can no longer be any doubt that light-waves consist of
electric vibrations in the all-pervading ether, and that the
latter possesses the properties of an insulator and a magnetic
medium. Electric oscillations in the ether occupy an inter-
mediate position between the exceedingly rapid oscillations of
light and the comparatively slow disturbances which are pro-
duced by a tuning-fork when thrown into vibration; but as
regards their rate of propagation, the traunsverse nature of
their vibrations, the consequent possibility of polarising them,
their refraction and reflection, it can be shown that in all these
respects they correspond completely to light and to heat-rays.
The electric waves only lack the power of affecting the eye,
as do also the dark heat-rays, whose frequency of oscillation is
not high enough for this.

Here we have two great natural agencies—on the one
hand light, which is so full of mystery and affects us in so
many ways, and on the other hand electricity, which is equally
mysterious, and perhaps even more varied in its manifesta-
tions : to have furnished a complete demonstration that these
two are most closely connected together is to have achieved a
great feat. From the standpoint of theoretical science it is
perhaps even more important to be able to understand how
apparent actions-at-a-distance really consist in a propagation
of an action from one layer of an intervening medium
to the next. Gravitation still remains an unsolved puzzle; as
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yet a satisfactory explanation of it has not been forthcoming,
and we are still compelled to treat it as a pure action-at-a-
distance.

Amongst scientific men Heinrich Hertz has secured en-
during fame by his researches. But not through his work
alone will his memory live; none of those who knew him can
ever forget his uniform modesty, his warm recognition of the
labours of others, or his genuine gratitude towards his teachers,
To him it was enough to seek after truth; and this he did
with all zeal and devotion, and without the slightest trace of
self-seeking, Even when he had some right to claim dis-
coveries as his own he preferred to remain quietly in the
background. But although naturally quiet, he could be merry
enough amongst his friends, and could enliven social intercourse
by many an apt remark. He never made an enemy, although
he knew how to judge slovenly work, and to appraise at its
true value any pretentious claim to scientific recognition.

His career may be briefly sketched as follows. In the
year 1880 he was appointed Demonstrator in the Physieal
Laboratory of the Berlin University. In 1883 he was in-
duced by the Prussian Education Department (Kultusminis-
terium) to go to Kiel with a view to his promotion to the
office of Privat-docent there. In Easter of 1885 he .was

* called to Karlsruhe as ordinary Professor of Physics at the

Technical School. Here he made his most important dis-
coveries, and it was during his stay at Karlsruhe that he
married Miss Elizabeth Doll, the daughter of one of his
colleagues. Two years later he received a call to the Uni-
versity of Bonn as ordinary Professor of Physics, and removed
thither in Easter 1889.

Few as the remaining years of his life unfortunately were,
they brought him ample proof that his work was recognised
and honoured by his contemporaries. In the year 1888 he
was awarded the Matteucci Medal of the Italian Scientific
Society, in 1889 the La Caze Prize of the Paris Academy of

Sciences and the Baumgartner Prize of the Imperial Academy
b
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of Vienna, in 1890 the Rumford Medal of the Royal Society,
and in 1891 the Bressa Prize of the Turin Royal Academy.
He was elected a corresponding member of the Academies of
Berlin, Munich, Vienna, Gottingen, Rome, Turin, and Bologna,
and of many other learned societies ; and the Prussian Govern-
ment awarded him the Order of the Crown.

He was not long spared to enjoy these honours. A pain-
ful abscess began to develop, and in November 1892 the
disease became threatening. An operation performed at that
time appeared to relieve the pain for a while. Hertz was able
to carry on his lectures, but only with great effort, up to the
7th of December 1893. On New Year’s day of 1894 death
released him from his sufferings.

In the present treatise on the Principles of Mechanics, the
last memorial of his labours here below, we again see how
strong was his inclination to view scientific principles from the
most general standpoint. In it he has endeavoured to give a
consistent representation of a complete and connected system
of mechanics, and to deduce all the separate special laws of this
science from a single fundamental law which, logically con-
sidered, can, of course, only be regarded as a plausible hypo-
thesis. In doing this he has reverted to the oldest theoretical
conceptions, which may also be regarded as the simplest and
most natural; and he propounds the question whether these
do not suffice to enable us to deduce, by consistent and rigid
methods of proof, all the recently discovered general principles
of mechanics, even such as have only made their appearance
as inductive generalisations.

The first scientific development of mechanics arose out of
investigations on the equilibrium and motion of solid bodies
which were directly connected with one another; we have
examples of these in the simple mechanics, the lever, pulleys,
inclined planes, etec. The law of virtual velocities is the
earliest general solution of all the problems which thus arise.
Later on Galileo developed the conception of inertia and of the
accelerating action of force, although he represented this as
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consisting of a series of impulses. Newton first conceived the
idea of action-at-a-distance, and showed how to determine it
by the principle of equal action and reaction. It is well
known that Newton, as well as his contemporaries, at first only
accepted the idea of direct action-at-a-distance with the greatest
reluctance.

From that time onwards Newton’s idea and definition of
force served as a basis for the further development of mechanics.
Gradually men learned how to handle problems in which con-
servative forces were combined with fixed connections; of
these the most general solution is given by d’Alembert’s Prin-
ciple. The chief general propositions in mechanics (such as the
law of the motion of the centre of gravity, the law of areas for
rotating systems, the principle of the conservation of vis viva,
the principle of least action) have all been developed from the
assumption of Newton’s attributes of constant, and therefore
conservative, forces of attraction between material points, and of
the existence of fixed connections between them. They were
originally discovered and proved only under these assumptions.
Subsequently it was discovered by observation that the proposi-
tions thus deduced could claim a much more general validity
in nature than that which followed from the mode in which
they were demonstrated. Hence it was concluded that certain
general characteristics of Newton’s conservative forces of attrac-
tion were common to all the forces of nature; but no proof was
forthcoming that this generalisation could be deduced from
any common basis. Hertz has now endeavoured to furnish
mechanics with such a fundamental conception from which all
the laws of mechanics which have been recognised as of general
validity can be deduced in a perfectly logical manner. He
has done this with great acuteness, making use in an admir-
able manner of new and peculiar generalised kinematical ideas.
He has chosen as his starting-point that of the oldest mechani-
cal theories, namely, the conception that all mechanical pro-
cesses go on a8 if the connections between the various parts
which act upon each other were fixed. Of course he is obliged
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to make the further hypothesis that there are a large number
of imperceptible masses with invisible motions, in order to
explain the existence of forces between bodies which are not in
direct contact with each other. Unfortunately he has not
given examples illustrating the manner in which he supposed
such hypothetical mechanism to act; to explain even the
simplest cases of physical forces on these lines will clearly
require much scientific insight and imaginative power. In
this direction Hertz seems to have relied chiefly on the
introduction of cyclical systems with invisible motions.

English physicists—e.g. Lord Kelvin, in his theory of vortex-
atoms, and Maxwell, in his hypothesis of systems of cells with
rotating contents, on which he bases his attempt at a mechani-
cal explanation of electromagnetic processes—have evidently
derived a fuller satisfaction from such explanations than from
the simple representation of physical facts and laws in the
most general form, as given in systems of differential equations.
For my own part, I must admit that I have adhered to the
latter mode of representation and have felt safer in so doing;
yet I have no essential objections to raise against a method
which has been adopted by three physicists of such eminence,

It is true that great difficulties have yet to be overcome
before we can succeed in explaining the varied phenomena of
physics in accordance with the system developed by Hertz. But
in every respect his presentation of the Principles of Mechanics
is & book which must be of the greatest interest to every reader
who can appreciate a logical system of dynamics developed
with the greatest ingenuity and in the most perfect mathe-
matical form, In the future this book may prove of great
heuristic value a8 a guide to the discovery of new and general
characteristics of natural forces.
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A1l physicists agree that the problem of physics consists
in tracing the phenomena of nature back to the simple laws
of mechanics, But there is not the same agreement as to
what these simple laws are. To most physicists they are
simply Newton’s laws of motion. But in reality these latter
laws only obtain their inner significance and their physical
meaning through the tacit assumption that the forces of which
they speak are of a simple nature and possess simple pro-
perties. But we have here no certainty as to what is simple
and permissible, and what is not: it is just here that we
no longer find any general agreement. Hence there arise
actual differences of opinion as to whether this or that
assumption is in accordance with the wusual system of
mechanics, or not. It is in the treatment of new problems
that we recognise- the existence of such open questions as
a real bar to progress. So, for example, it is premature to
attempt to base the equations of motion of the ether upon the
laws of mechanics until we have obtained a perfect agreement
as to what is understood by this name.

The problem which I have endeavoured to solve in the
present investigation is the following :—To fill up the existing
gaps and to give a complete and definite presentation of the
laws of mechanics which shall be consistent with the state of
our present knowledge, being neither too restricted nor too
extensive in relation to the scope of this knowledge. The
presentation must not be too restricted: there must be no
natural motion which it does not embrace. On the other
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hand it must not be too extemsive: it must admit of no
motion whose occurrence in nature is excluded by the state
of our present knowledge. ~Whether the presentation here
given as the solution of this problem is the only possible °
one, or whether there are other and perhaps better possible
ones, remains open. But that the presentation given is in
every respect a possible one, I prove by developing its con-
sequences, and showing that when fully unfolded it is eapable
of embracing the whole content of ordinary mechanics, so
far as the latter relates only to the actual forces and connec-
tions of nature, and is not regarded as a field for mathematical
exercises.

In the process of this development a theoretical discussion
has grown into a treatise which contains a complete survey of
all the more important general propositions in dynamics, and
which may serve as a systematic text-book of this science.
For several reasons it is not well suited for use as a first -
introduction; but for these very reasons it is the better
suited to guide those who have already a fair mastery of
mechanics as usually taught. It may lead them to a vantage-
ground from which they can more clearly perceive the physical
meaning of mechanical principles, how they are related to each
other, and how far they hold good; from which the ideas of
force and the other fundamental ideas of mechanics appear
stripped of the last remnant of obscurity.

In his papers on the principle of least action and on
cyclical systems! von Helmholtz has already treated in an
indirect manner the problem which is investigated in this
book, and has given one possible solution of it. In the first
set of papers he propounds and maintains the thesis that a
system of mechanics which regards as of universal validity,
not only Newton's laws, but also the special assumptions
involved (in addition to these laws) in Hamilton’s Principle,

1 H. von Helmholtz, *Uber die physikalische Bedeutung des Prinzips der
kleinsten Wirkung,” Journal fir die reine und angewandte Mathematik, 100, pp.

137-166, 218-222, 1887 ; ‘‘ Prinzipien der Statik monocyklischer Systeme,” ibid,
97, pp. 111-140, 317-336, 1884,
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would yet be able to embrace all the processes of nature. In
the second set of papers the meaning and importance of
concealed motions is for the first time treated in a general
way. Both in its broad features and in its details my own
investigation owes much to the above-mentioned papers: the
chapter on cyclical systems is taken almost directly from
them. Apart from matters of form, my own solution differs
from that of von Helmholtz chiefly in two respects. Firstly,
I endeavour from the start to keep the elements of mechanics
free from that which von Helmholtz only removes by subse-
quent restriction from the mechanics previously developed.
Secondly, in a certain sense I eliminate less from mechanics,
inasmuch as I do not rely upon Hamilton’s Principle or
any other integral principle. The reasons for this and the
consequences which arise from it are made clear in the book
itself.

In his important paper on the physical applications of
dynamics, J. J. Thomson ! pursues a train of thought similar
to that contained in von Helmholtz’s papers. Here again the
author develops the consequences of a system of dynamics
based upon Newton’s laws of motion and also. upon other
special assumptions which are not explicitly stated. I might
have derived assistance from this paper as well; but as a
matter of fact my own investigation had made considerable
progress by the time I became familiar with it. I may say
the same of the mathematical papers of Beltrami® and
Lipschitz® although these are of much older date. Still I
found these very suggestive, as also the more recent presenta-
tion of their investigations which Darboux* has given with

1 J. J. Thomson, ‘‘On some Applications of Dynamical Prineiples to Physical
Phenomenas,” Philosophical Transactions, 176, II., pp. 807-842, 1885.

2 Beltrami, ‘‘Sulla teoria generale dei parametri differenziali,” Memorie
della Reale Accademia di Bologna, 25 Febbrajo 1869.

* R. Lipechitz, ** Untersuchungen eines Problems der Variationsrechnung, in
welchem das Problem der Mechanik enthalten ist,” Journal fir die reine und
angewandte Mathematik, 74, pp. 116-149, 1872. *‘ Bemerkungen zu dem Princip
des kleinsten Zwanges,” ibid. 82, pp. 316-842, 1877.

4 G. Darboux, Legons sur la théorie générale des surfaces, livre v., chapitres
vi. vii. viii., Paris, 1889,
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additions of his own. I may have missed many mathematical
papers which I could and should have consulted. In a general
way I owe very much to Mach’s splendid book on the
Development of Mechanics 1 have naturally consulted. the
better-known text-books of general mechanics, and especially
Thomson and Tait’'s comprehensive treatise? The notes of
a course of lectures on analytical dynamics by Borchardt,
which I took down in the winter of 1878-79, have proved
useful. These are the sources upon which I have drawn; in
the text I shall only give such references as are requisite.
As to the details I have nothing to bring forward which is
new or which could not have been gleaned from many books.
What I hope is new, and to this alone I attach value, is the
arrangement and collocation of the whole—the logical or
philosophical aspect of the matter. According as it marks
an advance in this direction or not, my work will attain or
fail of its object.

1 E. Mach, Die Mechanik in shrer Entwickelung historisch-kritisch dargestellt,
Leipzig, 1883 (of this there is an English translation by T. J. M‘Cormack, The

Science of Mechanics, Chicago, 1893).
2 Thomson and Tait, Natural Philosophy.
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INTRODUCTION

THE most direct, and in a sense the most important, problem
which our conscious knowledge of nature should enable us to
solve is the anticipation of future events, so that we may
arrange our present affairs in accordance with such anticipa-
tion. As a basis for the solution of this problem we always
make use of our knowledge of events which have already
Jecurred, obtained by chance observation or by prearranged
experiment. In endeavouring thus to draw inferences as to
the future from the past, we always adopt the following process.
We form for ourselves images or symbols of external objects;
and the form which we give them is such that the necessary
consequents of the images in thought are always the images of
the necessary consequents in nature of the things pictured. In
order that this requirement may be satisfied, there must be a
certain conformity between nature and our thought. Experience
teaches us that the requirement can be satisfied, and hence that
such a conformity does in fact exist. When from our accumu-
lated previous experience we have once succeeded in deducing
images of the desired nature, we can then in a short time
develop by means of them, as by means of models, the
consequences which in the external world only arise in a com-
paratively long time, or as the result of our own interposition.
We are thus enabled to be in advance of the facts, and to
decide as to present affairs in accordance with the insight so
obtained. The images which we here speak of are our concep-
tions of things. With the things themselves they are in
conformity in one important respect, namely, in satisfying the
above - mentioned requirement. For our purpose it is mnot
B



~=- e

2 INTRODUCTION

necessary that they should be in conformity with the things in
any other respect whatever. As a matter of fact, we do not
know, nor have we any means of knowing, whether our con-
ceptions of things are in conformity with them in any other
than this one fundamental respect.

The images which we may form of things are not deter-
mined without ambiguity by the requirement that the conse-
quents of the images must be the images of the consequents.
Various images of the same objects are possible, and these
images may differ in various respects. We should at once
denote as inadmissible all images which implicitly contradict
the laws of our thought. Hence we postulate in the first place
that all our images shall be logically permissible—or, briefly,
that they shall be permissible. We shall denote as incorrect
any permissible images, if their essential relations contradict
the relations of external things, t.e. if they do not satisfy our
first fundamental requirement. Hence we postulate in the
second place that our images shall be correct. But two per-
missible and correct images of the same external objects may
yet differ in respect of appropriateness. Of two images of the
same object that is the more appropriate which pictures more
of the essential relations of the object,—the one which we may
call the more distinct. Of two images of equal distinctness
the more appropriate is the one which contains, in addition to
the essential characteristics, the smaller number of superfluous
or empty relations,—the simpler of the two. Empty relations
cannot be altogether avoided : they enter into the images
because they are simply images,—images produced by our
mind and necessarily affected by the characteristics of its
mode of portrayal.

The postulates already mentioned are those which we
assign to the images themselves: to a scientific representation
of the images we assign different postulates. We require of
this that it should lead us to a clear conception of what
properties are to be ascribed to the images for the sake
of permissibility, what for correctness, and what for appropri-
atenesss. Only thus can we attain the possibility of modi-
fying and improving our images. What is ascribed to the

A 2
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images for the sake of appropriateness is contained in the nota-
tions, definitions, abbreviations, and, in short, all that we can
arbitrarily add or take away. 'What enters into the images for
the sake of correctness is contained in the results of experience,
from which the images are built up. What enters into the
images, in order that they may be permissible, is given by the
nature of our mind. To the question whether an image is per-
missible or not, we can without ambiguity answer yes or no; and
our decision will hold good for all time. And equally without
ambiguity we can decide whether an image is correct or not;
but only according to the state of our present experience, and
permitting an appeal to later and riper experience. But we
cannot decide without ambiguity whether an image is appro-
Ppriate or not; as to this differences of opinion may arise. *One
image may be more suitable for one purpose, another for another ;
only by gradually testing many images can we finally succeed
in obtaining the most appropriate.

Those are, in my opinion, the standpoints from which we
must estimate the value of physical theories and the value of
the representations of physical theories. They are the stand-
points from which we shall here consider the representations
which have been given of the Principles of Mechanics. We
must first explain clearly what we denote by this name.

Strictly speaking, what was originally termed in mechanics
a principle was such a statement as could not be traced back

to other propositions in mechanics, but was regarded as a direct |

result obtained from other sources of knowledge. In the course
of historical development it inevitably came to pass that pro-
positions, which at one time and under special circumstances
were rightly denoted as principles, wrongly retained these
names. Since Lagrange’s time it has frequently been remarked
that the principles of the centre of gravity and of areas are
in reality only propositions of a general nature. But we can
with equal justice say that other so-called principles cannot
bear this name, but must descend to the rank of propositions
or eorollaries, when the representation of mechanics becomes
based upon one or more of the others. Thus the idea of a
mechanical principle has not been kept sharply defined. We

i
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4 INTRODUCTION

shall therefore retain for such propositions, when mentioning
them separately, their customary names. But these separate
concrete propositions are not what we shall have in mind when
we speak simply and generally of the principles of mechanics:
by this will be meant any selection from amongst such and
similar propositions, which satisfies the requirement that the
whole of mechanics can be developed from it by purely deduc-
tive reasoning without any further appeal to experience. In
this sense the fundamental ideas of mechanics, together with the
principles connecting them, represent the simplest image which
physics can produce of things in the sensible world and the
processes which occur in it. By varying the choice of the
propositions which we take as fundamental, we can give
various representations of the principles of mechanics. Hence
we can thus obtain various images of things; and these images
we can test and compare with each other in respect of per-
missibility, correctness, and appropriateness.

I

The customary representation of mechanics gives us a first
image. By this we mean the representation, varying in detail
but identical in essence, contained in almost all text-books
which deal with the whole of mechanics, and in almost all
courses of lectures which cover the whole of thisscience. This
is the path by which the great army of students travel and are
inducted into the mysteries of mechanics. It closely follows
the course of historical development and the sequence of
discoveries. Its principal stages are distinguished by the
names of Archimedes, Galileo, Newton, Lagrange. The con-
ceptions upon which this representation is based are the ideas
of space, time, force, and mass. In it force is introduced as
the cause of motion, existing before motion and independently
of it. Space and force first appear by themselves, and their
relations are treated of in statics. Kinematics, or the science
of pure motion, confines itself to connecting the two ideas of
space and time. Galileo’s conception of inertia furnishes a
connection between space, time, and mass alone. Not until
Newton's Laws of Motion do the four fundamental ideas

A
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become connected with each other. These laws contain the
seed of future developments; but they do not furnish any
general expression for the influence of rigid spacial connections.
Here d’Alembert’s principle extends the general results of
statics to the case of motion, and closes the series of inde-
pendent fundamental statements which cannot be deduced from
each other. From here on everything is deductive inference.
In fact the above-mentioned ideas and laws are not only
necessary but- sufficient for the development of the whole of
mechanics from them as a necessary consequence of thought ;
and all other so-called principles can be regarded as proposi-
tions and corollaries deduced by special assumptions. Hence
the above ideas and laws give us, in the sense in which we
have used the words, a first system of principles of mechanics,
and at the same time the first general image of the natural
motions of material bodies. .

Now, at first sight, any doubt as to the logical permis-
sibility of this image may seem very far-fetched. It seems
almost inconceivable that we should find logical imperfections
in a system which has been thoroughly and repeatedly con-
sidered by many of the ablest intellects. But before we
abandon the investigation on this account, we should do well
to inquire whether the system has always given satisfaction to
these able intellects. It is really wonderful how easy it is to
attach to the fundamental laws considerations which are quite
in accordance with the usual modes of expression in mechanics,
and which yet are an undoubted hindrance to clear thinking.
Let us endeavour to give an example of this. We swing in a
circle a stone tied to a string, and in so doing we are conscious
of exerting a force upon the stone. This force constantly
deflects the stone from its straight path. If we vary the force,
the mass of the stone, and the length of the string, we find
that the actual motion of the stone is always in accordance
with Newton’s second law. But now the third law requires
an opposing force to the force exerted by the hand upon the
stone. 'With regard to this opposing force the usual explanation
is that the stone reacts upon the hand in consequence of centri-
fugal force, and that this centrifugal force is in fact exactly
equal and opposite to that which we exert. Now is this mode
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of expression permissible ? Is what we call centrifugal force
anything else than the inertia of the stone? Can we, without
destroying the clearness of our conceptions, take the effect of
inertia twice into account,—firstly as mass, secondly as force ?
In our laws of motion, force was a cause of motion, and was
present before the motion. Can we, without confusing our
ideas, suddenly begin to speak of forces which arise through
motion, which are a consequence of motion? Can we behave
as if we had already asserted anything about forces of this new
kind in our laws, as if by calling them forces we could invest
them with the properties of forces? These questions must
clearly be answered in the negative. The only possible
explanation is that, properly speaking, centrifugal force is not
a force at all.  Its name, like the name vis viva, is accepted as a
historic tradition; it is convenient to retain it, although we should
rather apologise for its retention than endeavour to justify it.
But, what now becomes of the demands of the third law, which
requires a force exerted by the inert stone upon the hand, and
which can only be satisfied by an actual force, not a mere name ?

I do not regard these as artificial difficulties wantonly
raised : they are objections which press for an answer. Is not
their origin to be traced back to the fundamental laws? The
force spoken of in the definition and in the first two laws acts
upon a body in one definite direction. The sense of the third
law is that forces always connect two bodies, and are directed
from the first to the second as well as from the second to the
first. It seems to me that the conception of force assumed and
created in us by the third law on the one hand, and the first
two laws on the other hand, are slightly different. This slight
difference may be enough to produce the logical obscurity of
which the consequences are manifest in the above example.
It is not necessary to discuss further examples. We can
appeal to general observations as evidence in support of the
above-mentioned doubt.

As such, in the first place, I would mention the experience
that it is exceedingly difficult to expound to thoughtful hearers
the very introduction to mechanics without being occasionally
embarrassed, without feeling tempted now and again to
apologise, without wishing to get as quickly as possible over
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the rudiments, and on to examples which speak for themselves.
I fancy that Newton himself must have felt this embarrassment
when he gave the rather forced definition of mass as being the
product of volume and density. I fancy that Thomson and
Tait must also have felt it when they remarked that this is
really more a definition of density than of mass, and neverthe-
less contented themselves with it as the only definition of mass.
Lagrange, too, must have felt this embarrassment and the wish
to get on at all costs; for he briefly introduces his Mechanics
with the explanation that a force is a cause which imparts “ or
tends to impart” motion to a body; and he must certainly
have felt the logical difficulty of such a definition. I find
further evidence in the demonstrations of the elementary pro-
positions of statics, such as the law of the parallelogram of
forces, of virtual velocities, etc. Of such propositions we have
numerous proofs given by eminent mathematicians. These
claim to be rigid proofs; but, according to the opinion of other
distinguished mathematicians, they in no way satisfy this claim.
In a logically complete science, such as pure mathematics, such
a difference of opinion is utterly inconceivable.

Weighty evidence seems to be furnished by the state-
ments which one hears with wearisome frequency, that the
nature of force is still a mystery; that one of the chief problems
of physics is the investigation of the nature of force, and so on.
In the same way electricians are continually attacked as to the
nature of electricity. Now, why is it that people never in
this way ask what is the nature of gold, or what is the nature
of velocity ? Is the nature of gold better known to us than
that of electricity, or the nature of velocity better than that of
force? Can we by our conceptions, by our words, completely
represent the nature of any thing? Certainly not. I fancy
the difference must lie in this. With the terms “velocity”
and “gold” we connect a large number of relations to other
terms; and between all these relations we find no contradic-
tions which offend us. We are therefore satisfied and ask no
further questions. But we have accumulated around the
terms “force” and “electricity” more relations than can be
completely reconciled amongst themselves. We have an
obscure feeling of this and want to have things cleared up.
Our confused wish finds expression in the confused question
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as to the nature of force and electricity. But the answer
which we want is not really an answer to this question. It is
not by finding out more and fresh relations and connections
that it can be answered; but by removing the contradictions
existing between those already known, and thus perhaps by
reducing their number. When these painful contradictions
are removed, the question as to the nature of force will not
have been answered; but our minds, no longer vexed, will
cease to ask illegitimate questions.

I have thrown such strong doubts upon the permissibility
of this image that it might appear to be my intention to
contest, and finally to deny, its permissibility. But my inten-
tion and conviction do not go so far as this. Even if the
logical uncertainties, which have made us solicitous as to our
fundamental ideas, do actually exist, they certainly have not
prevented a single one of the numerous triumphs which
mechanics has won in its applications. Hence, they cannot
consist of contradictions between the essential characteristics of
our image, nor, therefore, of contradictions between those rela-
tions of mechanics which correspond to the relations of things.
They must rather lie in the unessential characteristics which we
have ourselves arbitrarily worked into the essential content
given by nature. If so, these dilemmas can be avoided.
Perhaps our objections do not relate to the content of the image
devised, but only to the form in which the content is represented.
It is not going too far to say that this representation has never
attained scientific completeness; it still fails to distinguish
thoroughly and sharply between the elements in the image which
arise from the necessities of thought, from experience, and from
arbitrary choice. ~This is also the opinion of distinguished physi-
cists who have thought over and discussed ! these questions,
although it cannot be said that all of them are in agreement.?
This opinion also finds confirmation in the increasing care
with which the logical analysis of the elements is carried out
in the more recent text-books of mechanics® We are con-

1 See E. Mach, The Science of Mechanics, }). 244. Beo also in Nature (48, pp.
62, 101, 117, 126 and 166, 1893 ; and Proc. Phys. Soc. 13, p. 289, 1893) a discus-
sion on the foundations of dynamics introduced by Prof. Oliver Lodge and carried
on in the Physical Society of London.

3 See Thomson and Tait, Natural Philosophy, § 205 et seq.

3 See E. Budde, 4¥gemeine Mechanik der Punkte und starren Systeme, p. 111-138
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-vinced, as are the authors of these text-books and the physicists
referred to, that the existing defects are only defects in form ;
and that all indistinctness and uncertainty can be avoided by
suitable arrangement of definitions and notations, and by due
care in the mode of expression. In this sense we admit, as every-
one does, the permissibility of the content of mechanics. But
the dignity and importance of the subject demand, not simply that
we should readily take for granted its logical clearness, but that
we should endeavour to show it by a representation so perfect
that there should no longer be any possibility of doubting it.

Upon the correctness of the image under consideration we
can pronounce judgment more easily and with greater certainty
of general assent. No one will deny that within the whole
range of our experience up to the present the correctness is
perfect ; that all those characteristics of our image, which claim
to represent observable relations of things, do really and correctly
correspond to them, Our assurance, of course, is restricted to
the range of previous experience: as far as future experience is
concerned, there will yet be occasion to return to the question of
correctness. To many this will seem to be excessive and absurd
caution: to many physicists it appears simply inconceivable
that any further experience whatever should find anything to
alter in the firm foundations of mechanics. Nevertheless, that
which is derived from experience can again be annulled by
experience. This over-favourable opinion of the fundamental

" laws must obviously arise from the fact that the elements of

experience are to a certain extent hidden in them and blended
with the unalterable elements which are necessary consequences
of our thought. Thus the logical indefiniteness of the repre-
sentation, which we have just censured, has one advantage.
It gives the foundations an appearance of immutability; and
perhaps it was wise to introduce it in the beginnings of the
science and to allow it to remain for a while. The correctness
of the image in all cases was carefully provided for by making

the reservation that, if need be, facts derived from experience

should determine definitions or vice versa. 1In a perfect science
such groping, such an appearance of certainty, is inadmissible.

(Berlin : 1890). The representation there given shows at the same time how great
are the difficulties encountered in avoiding g;screpancies in the use of the elements.
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Mature knowledge regards logical clearness as of prime im-
portance: only logically clear images does it test as to correct-
ness ; only correct images does it compare as to appropriateness.
By pressure of circumstances the process is often reversed.
Images are found to be suitable for a certain purpose; are next
tested as to their correctness ; and only in the last place purged
of implied contradictions.

If there is any truth in what we have just stated, it
seems only natural that the system of mechanics under con-
sideration should prove most appropriate in its applications to
those simple phenomena for which it was first devised, ze.
especially to the action of gravity and the problems of
practical mechanics. But we should not be content with this.
We should remember that we are not here representing
the needs of daily life or the standpoint of past times; we
are considering the whole range of present physical know-
ledge, and are, moreover, speaking of appropriateness in the
special sense defined in the beginning of this introduction.
Hence we are at once bound to ask,—Is this image perfectly

distinet ? Does it contain all the characteristics which our

present knowledge enables us to distinguish in natural
motions ? Our answer is a decided—No. All the motions
of which the fundamental laws admit, and which are treated
of in mechanics as mathematical exercises, do not ocecur in
nature. Of natural motions, forces, and fixed connections, we
can predicate more than the accepted fundamental laws do.
Since the middle of this century we have been firmly con-
vinced that no forces actually exist in nature which would
involve a violation of the principle of the conservation of
energy. The conviction is much older that only such forces
exist as can be represented as a sum of mutual actions between
infinitely small elements of matter. Again, these elementary
forces are not free. 'We can assert as a property which they
are generally admitted to possess, that they are independent of
absolute time and place. Other properties are disputed.
Whether the elementary forces can only consist of attractions
and repulsions along the line connecting the acting masses;
whether their magnitude is determined only by the distance or
whether it is also affected by the absolute or relative velocity ;
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whether the latter alone comes into consideration, or the accel-
eration or still higher differential coefficients as well—all these
properties have been sometimes presumed, at other times ques-
tioned. Although there is such difference of opinion as to the
precise properties which are to be attributed to the elementary
forces, there is a general agreement that more of such general
properties can be assigned, and can from existing observations
be deduced, than are contained in the fundamental laws. We
are convinced that the elementary forces must, so to speak, be
of a simple nature. And what here holds for the forces, can
be equally asserted of the fixed connections of bodies which are
represented mathematically by equations of condition between
the coordinates and whose effect is determined by d’Alembert’s
principle. It is mathematically possible to write down any
finite or differential equation between coordinates and to
require that it shall be satisfied ; but it is not always possible
to specify a natural, physical connection corresponding to such
an equation: we often feel, indeed sometimes are convinced,
that such a connection is by the nature of things excluded.
And yet, how are we to restrict the permissible equations of
condition ? Where is the limiting line between them and
the conceivable ones? To consider only finite equations of
condition, as has often been done, is to go too far; for
differential equations which are not integrable can actually
occur as equations of condition in natural problems.

In short, then, so far as the forces, as well as the fixed
relations, are concerned, our system of principles embraces all
the natural motions; but it also includes very many motions
which are not natural. A system which excludes the latter,
or even a part of them, would picture more of the actual
relations of things to each other, and would therefore in this
sense be more appropriate. We are next bound to inquire as
to the appropriateness of our image in a second direction. Is
our image simple? Is it sparing in unessential characteristics
—ones added by ourselves, permissibly and yet arbitrarily, to
the essential and natural ones? In answering this question
our thoughts again turn to the idea of force. It cannot be
denied that in very many cases the forces which are used in
mechanics for treating physical problems are simply sleeping
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partners, which keep out of the business altogether when actual
facts have to be represented. In the simple relations with
which mechanics originally dealt, this is not the case. The
weight of a stone and the force exerted by the arm seem to be
as real and as readily and directly perceptible as the motions
which they produce. But jt is otherwise when we turn to the
motions of the stars. Here the forces have never been the
objects of direct perception ; all our previous experiences relate
only to the apparent position of the stars. Nor do we expect
in future to perceive the forces. The future experiences which
we anticipate again relate only to the position of these luminous
points in the heavens. It is only in the deduction of future
experiences from the past that the forces of gravitation enter as
transitory aids in the calculation, and then disappear from
consideration. Precisely the same is true of the discussion of
molecular forces, of chemical actions, and of many electric and
magnetic actions. And if after more mature experience we
return to the simple forces, whose existence we never doubted,
we learn that these forces which we had perceived with con-
vincing certainty, were after all not real. More mature
mechanics tells us that what we believed to be simply the
tendency of a body towards the earth, is not really such: it is
the result, imagined only as a single force, of an inconceivable
number of actual forces which attract the atoms of the body
towards all the atoms of the universe. Here again the actual
forces have never been the objects of previous experience ; nor
do we expect to come across them in future experiences.
Only during the process of deducing future experiences from
the past do they glide quietly in and out. But even if the
forces have only been introduced by ourselves into nature, we
should not on that account regard their introduction as
inappropriate. 'We have felt sure from the beginning that
unessential relations could not be altogether avoided in our
images. All that we can ask is that these relations should,
a8 far as possible, be restricted, and that a wise discretion
should be observed in their use. But has physics always
been sparing in the use of such relations ? Has it not rather
been compelled to fill the world to overflowing with forces of
the most various kinds-—with forces which never appeared in
the phenomena, even with forces which only came into action
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in exceptional cases? We see a piece of iron resting upon a
table, and we accordingly imagine that no causes of motion
—no forces—are there present. Physics, which is based upon
the mechanics considered here and necessarily determined by
this basis, teaches us otherwise. Through the force of gravita-
tion every atom of the iron is attracted by every other atom in
the universe. But every atom of the iron is magnetic, and is
thus connected by fresh forces with every other magnetic atom
in the universe. Again, bodies in the universe contain
electricity in motion, and this latter exerts further complicated
forces which attract every atom of the iron. In so far as the
parts of the iron themselves contain electricity, we have fresh
forces to take into consideration; and in addition to these
again various kinds of molecular forces. Some of these forces
are not small: if only a part of these forces were effective, this
part would suffice to tear the iron to pieces. But, in fact, all
the forces are so adjusted amongst each other that the effect of
the whole lot is zero; that in spite of a thousand existing
causes of motion, no motion takes place ; that the iron remains
at rest. Now if we place these conceptions before unpreju-
diced persons, who will believe us? "Whom shall we convince
that we are speaking of actual things, not impges of a riotous
imagination ? And it is for us to reflect whether we have
really depicted the state of rest of the iron and its particles in
a simple manner. Whether complications can be entirely
avoided is questionable; but there can be no question that a
system of mechanics which does avoid or exclude them is
simpler, and in this sense more appropriate, than the one here
considered ; for this latter not only permits such conceptions,
but directly obtrudes them upon us,

Let us now collect together as briefly as possible the
doubts which have occurred to wus in considering the
customary mode of representing.the principles of mechanics.
As far as the form is concerned, we consider that the logical
value. of the separate statements is not defined with
sufficient clearness. As far as the facts are concerned, it
appears to us that the motions considered in mechanies do not
exactly coincide with the natural motions under consideration.
Many properties of the natural motions are not attended to in
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mechanics ; many relations which are considered in mechanics
are probably absent in nature. Even if these objections are
acknowledged to be well founded, they should not lead us to
imagine that the customary representation of mechanics is on
that account either bound to or likely to lose its value and its
privileged position; but they sufficiently justify us in looking
out for other representations less liable to censure in these
respects, and more closely conformable to the things which
have to be represented.

II

There is a second image of mechanical processes which is
of much more recent origin than the first. Its development
from, and side by side with, the latter is closely connected with
advances which physical science has made during the past few
decades. Up to the middle of this century its ultimate aim
was apparently to explain natural phenomena by tracing them
back to innumerable actions-at-a-distance between the atoms of
matter. This mode of conception corresponded completely to
what we have spoken of as the first system of mechanical
principles: each of the two was conditioned by the other.
Now, towards the end of the century, physics has shown a
preference for a different mode of thought. Influenced by the
overpowering impression made by the discovery of the prin-
ciple of the conservation of energy, it likes to treat the
phenomena which occur in its domain as transformations of
energy into new forms, and to regard as its ultimate aim the
tracing back of the phenomena to the laws of the transforma-
tion of energy. This mode of treatment can also be applied
from the beginning to the elementary phenomena of motion.
There thus arises a new and different representation of
mechanics, in which from the start the idea of force retires in
favour of the idea of emergy. It is this new image of the
elementary processes of motion which we shall denote as the
second ; and to it we shall now devote our attention. In
discussing the first image we had the advantage of being able
to assume that it stood out plainly before the eyes of all
physicists. 'With the second image this is not the case. It has
never yet been portrayed in all its details. So far as I know,
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there is no text-book of mechanics which from the start
teaches the subject from the standpoint of energy, and intro-
duces the idea of emergy before the idea of force. Perhaps
there has never yet been a lecture on mechanics prepared
according to this plan. But to the founders of the theory of
energy it was evident that such a plan was possible ; the remark
has often been made that in this way the idea of force with its
attendant difficulties could be avoided ; and in special scientific
applications chains of reasoning frequently occur which belong
entirely to this mode of thought. Hence we can very well
sketch the rough outlines of the image ; we can give the general
plan according to which such a representation of mechanics
must be arranged. We here start, as in the case of the first
image, from four independent fundamental ideas; and the
relations of these to each other will form the contents of
mechanics. Two of them—space and time—have a mathe-
matical character ; the other two—mass and energy—are intro-
duced as physical entities which are present in given quantity,
and cannot be destroyed or increased. In addition to explain-
ing these matters, it will, of course, also be necessary to indicate
clearly by what concrete experiences we ultimately establish the
presence of mass and energy. We here assume this to be pos-
sible and to be done. It is obvious that the amount of energy
connected with given masses depends upon the state of these
masses. But it is as a general experience that we must first lay
down that the energy present can always be split up into two
parts, of which the one is determined solely by the relative posi-
tions of the masses, while the other depends upon their absolute
velocities. The first part is defined as potential energy, the
second as kinetic energy. The form of the dependence of
kinetic energy upon the velocity of the moving bodies is in all
cases the same, and is known. The form of the dependence of
potential energy upon the position of the bodies cannot be
generally stated ; it rather constitutes the special nature and
characteristic peculiarity of the masses under consideration. It
is the problem of physics to ascertain from previous experience
this form for the bodies which surround us in nature. Up to
this point there come essentially into consideration only three
elements—space, mass, energy, considered in relation to each
other. In order to settle the relations of all the four funda-
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mental ideas, and thereby the course in time of the phenomena,
we make use of one of the integral principles of ordinary
mechanics which involve in their statement the idea of energy.
It is not of much importance which of these we select; we can
and shall choose Hamilton’s principle. We thus lay down as
’ the sole fundamental law of mechanics, in accordance with
!| experience, the proposition that every system of natural bodies

'1moves just as if it were assigned the problem of attaining given .

!+ positions in given times, and in such a manner that the average
liover the whole time of the difference between kinetic and
‘Q ‘!potential energy shall be as small as possible. Although this law
may not be simple in form, it nevertheless represents without
ambiguity the transformations of energy, and enables us to pre-
determine completely the course of actual phenomena for the
future. In stating this new law we lay down the last of the
indispensable foundations of mechanics. All that we can
further add are only mathematical deductions and certain
simplifications of notation which, although expedient, are not
necessary. Among these latter is the idea of force, which does
not enter into the foundations. Its introduction is expedient
when we are considering not only masses which are connected
with constant quantities of energy, but also masses which give
up energy to other masses or receive it from them. Still, it is
not by any new experience that it is introduced, but by a
definition which can be formed in more than one way. And
accordingly the properties of the force so defined are not to be
ascertained by experience, but are to be deduced from the
definition and the fundamental laws. Even the confirmation
of these properties by experience is superfluous, unless we doubt
the correctness of the whole system. Hence the idea of force
as such cannot in this system involve any logical difficulties :

nor can it come in question in estimating the correctness of.

the system ; it can only increase or diminish its appropriateness.

Somewhat after the manner indicated would the principles
of mechanics have to be arranged in order to adapt them to
the conception of energy. The question now is, whether this
second image is preferable to the first. Let us therefore
consider its advantages and disadvantages.

It will be best for us here to consider first the question of

I R
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appropriateness, since it is in this respect that the improve-
ment is most obvious. For, to begin with, our second image of
natural motions is decidedly more distinct: it shows more of
their peculiarities than the first does. When we wish to
deduce Hamilton’s principle from the general foundations of
mechanics we have to add to the latter certain assumptions as
to the acting forces and the character of contingent fixed connec-
tions. These assumptions are of the most general nature, but
they indicate a corresponding number of important limitations
of the motions represented by the principle. And, conversely,
we can deduce from the principle a whole series of relations,
especially of mutual relations between every kind of possible
force, which are wanting in the principles of the first image;
in the second image they are present, and likewise occur,
which is the important point, in nature. To prove this is
the object of the papers published by von Helmholtz under
the title, Ueber die physikalische Bedeutung des Prinzips der
kleinsten Wirkung. It would be more correct to say that
the fact which has to be proved forms the discovery which is
demonstrated and communicated in that paper. For it is
truly a discovery to find that from such general assump-
tions, conclusions so distinct, so weighty, and so just can be
drawn. We may then appeal to that paper for confirmation
of our statement; and, inasmuch as it represents the furthest
advance of physics at the present time, we may spare ourselves
the question whether it be possible to conform yet more closely
to nature, say by limiting the permissible forms of potential
energy. We shall simply emphasise this, that in respect of
simplicity as well, our present image avoids the stumbling-
blocks which endangered the appropriateness of the first. For
if we ask ourselves the real reasons why physics at the present
time prefers to express itself in terms of energy, our answer will
be, Because in this way it best avoids talking about things of
which it knows very little, and which do not at all affect the
essential statements under consideration. We have already
had occasion to remark that in tracing back phenomena to
force we are compelled to turn our attention eontinually to
atoms and molecules. It is true that we are now convinced
that ponderable matter consists of atoms ; and we have definite
notions of the magnitude of these atoms and of their motions
C



18 INTRODUCTION

in certain cases. But the form of the atoms, their connection,
their motion in most cases—all these are entirely hidden from
us ; their number is in all cases immeasurably great. So that
although our conception of atoms is in itself an important and
interesting object for further investigation, it is in no wise
specially fit to serve as a known and secure foundation for
mathematical theories. To an investigator like Gustav Kirchhoff,
who was accustomed to rigid reasoning, it almost gave pain to
see atoms and their vibrations wilfully stuck in the middle of a
theoretical deduction. The arbitrarily assumed properties of
the atoms may not affect the final result. The result may be
correct. Nevertheless the details of the deduction are in great
part presumably false ; the deduction is only in appearance
a proof. The earlier mode of thought in physics scarcely
allowed any choice or any way of escape. Herein lies the
advantage of the conception of energy and of our second
image of mechanics: that in the hypotheses of the problems
there only enter characteristics which are directly accessible to
experience, parameters, or arbitrary coordinates of the bodies
under consideration; that the examination proceeds with the
aid of these characteristics in a finite and complete form ; and
that the final result can again be directly translated into tan-
gible experience. Beyond energy itself in its few forms, no
auxiliary constructions enter into consideration. Our state-
ments can be limited to the known peculiarities of the system
of bodies under consideration, and we need not conceal our
ignorance of the details by arbitrary and ineffectual hypotheses.
All the steps in the deduction, as well as the final result, can
be defended as correct and significant. These are the merits
which have endeared this method to present-day physics. They
are peculiar to our second image of mechanics: in the sense in
which we have used the words they are to be regarded as ad-
vantages in respect of simplicity, and hence of appropriateness.

Unfortunately we begin to be uncertain as to the value of
our system when we test its correctness and its logical permis-
sibility. The question of correctness at once gives rise to
legitimate doubts. Hamilton’s principle can be deduced from
the accepted foundations of Newtonian mechanics ; but this does
not by any means guarantee an accordance with nature. We
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have to remember that this deduction only follows if certain
assumptions hold good; and also that our system claims not
only to describe certain natural motions correctly, but to
embrace all natural motions. We must therefore investigate
whether these special assumptions which are made in addition
to Newton’s laws are universally true; and a single example
from nature to the contrary would invalidate the correctness
of our system as such, although it would not disturb in the
least the validity of Hamilton’s principle as a general proposi-
tion. The doubt is not so much whether our system includes
the whole manifold® of forces, as whether it embraces the
whole manifold of rigid connections which may arise between
the bodies of nature. The application of Hamilton’s principle
to a material system does not exclude the existence of fixed
connections between the chosen coordinates. But at any rate it
requires that these connections be mathematically expressible
by finite equations between the coordinates : it does not permit
the occurrence of connections which can only be represented
by differential equations. But nature itself does not appear
to entirely exclude connections of this kind. They arise, for
example, when bodies of three dimensions roll on one another
without slipping. By such a connection, examples of which
frequently occur, the position of the two bodies with respect
to each other is only limited by the condition that they must
always have one point of their surfaces common; but the
freedom of motion of the bodies is further diminished by a
degree. From the connection, then, there can be deduced
more equations between the changes of the coordinates than
between the coordinates themselves ; hence there must amongst
these equations be at least one non-integrable differential equa-
tion. Now Hamilton’s principle cannot be applied to such
a case; or, to speak more correctly, the application, which
is mathematically possible, leads to results which are physi-
cally false. Let us restrict our consideration to the case
of a sphere rolling without slipping upon a horizontal plane
under the influence of its inertia alome. It is not difficult
to see, without calculation, what motions the sphere can
actually execute. We can also see what motions would corre-
spond to Hamilton’s principle; these would have to take place

1 [ Mannigfaltigkeit is thus rendered throughout.—7'r.]
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in such a way that with constant vis viva the sphere would
attain given positions in the shortest possible time. We
can thus convince ourselves, without calculation, that the
two kinds of motions exhibit very ‘different characteristics. If
we choose any initial and final positions of the sphere, it is
clear that there is always one definite motion from the one to
the other for which the time of motion, 4.e. the Hamilton’s
integral, is & minimum. But, as a matter of fact, a natural
motion from every position to every other is not possible with-
out the co-operation of forces, even if the choice of the initial
velocity is perfectly free. And even if we choose the initial
and final positions so that a natural free motion between the
two is possible, this will nevertheless not be the one which
corresponds to a minimum of time. For certain initial and
final positions the difference can be very striking. In this
case a sphere moving in accordance with the principle would
decidedly have the appearance of a living thing, steering its
course consciously towards a given goal, while a sphere follow-
ing the law of nature would give the impression of an inani-
mate mass spinning steadily towards it. It would be of no
use to replace Hamilton’s principle by the principle of least
action or by any other integral principle, for there is but a
slight difference of meaning between all these principles, and in
the respect here considered they are quite equivalent. Only
in one way can we defend the system and preserve it from the
charge of incorrectness. We must decline to admit that rigid
connections of the kind referred to do actually and strictly occur
in nature. We must show that all so-called rolling without
slipping is really rolling with a little slipping, and is therefore
a case of friction. We have to rest our case upon this—that
generally friction between surfaces is one of the processes which
we have not yet been able to trace back to clearly understood
causes ; that the forces which come into play have only been
ascertained quite empirically; and hence that the whole problem
is one of those which we cannot at present handle without
making use of force and the roundabout methods of ordinary
mechanics. This defence is not quite convincing. For rolling
without slipping does not contradict either the principle of
energy or any other generally accepted law of physics. The
process is one which is so nearly realised in the visible world
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that even integration machines are constructed on the assump-
tion that it strictly takes place. 'We have scarcely any right,
then, to exclude its occurrence as impossible, at any rate from the
mechanics of unknown systems, such as the atoms or the parts
of the ether. But even if we admit that the connections in
question are only approximately realised in nature, the failure
of Hamilton’s principle still creates difficulties in these cases.
We are bound to require of every fundamental law of our
mechanical system, that when applied to approximately correct
relations it should always lead to approximately correct results,
not to results which are entirelyfalse. For otherwise,since all the
rigid connections which we draw from nature and introduce into
the calculations correspond only approximately to the actual
relations, we should get into a state of hopeless uncertainty
as to which admitted of the application of the law and which
not. And yet we do not wish to abandon entirely the defence
which we have proposed. We should prefer to admit that the
doubt is one which affects the appropriateness of the system,
not its correctness, so that the disadvantages which arise from
it may be outweighed by other advantages.

The real difficulties first meet us when we try to arrange
the elements of the system in strict accordance with the
requirements of logical permissibility. In introducing the idea
of energy we cannot proceed in the usual way, starting with
force, and proceeding from this to force-functions, to potential
energy, and to energy in general. Such an arrangement
would belong to the first representation of mechanics. With-
out assuming any previous consideration of mechanics, we have
to specify by what simple, direct experiences we propose
to define the presence of a store of emergy, and the deter-
mination of its amount. In what precedes we have only
assumed, not shown, that such a determination is possible.
At the present time many distinguished physicists tend so
much to attribute to energy the properties of a substance as
to assume that every smallest portion of it is associated at
every instant with a given place in space, and that through
all the changes of place and all the transformations of the energy
into new forms it retains its identity. These physicists must
have the conviction that definitions of the required kind can be
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found ; and-it is therefore permissible to assume that such defini-
tions can be given. But when we try to throw them into a con-
créte form, satisfactory to ourselves and likely to command general
acceptance, we become perplexed. This mode of conception as
a whole does not yet seem to have arrived at a satisfactory and
conclusive result. At the very beginning there arises a special
difficulty, from the circumstance that energy, which is alleged:
to resemble a substance, occurs in two such totally dissimilar
forms as kinetic and potential energy. XKinetic energy itself
does ‘not really require any new fundamental determination,
for it can be deduced from the ideas of velocity and mass; on
the other hand potential energy, which does require to be
settled independently, does not lend itself at all well to any
definition which ascribes to it the properties of a substance.
The amount of a substance is necessarily a positive quantity ;
but we never hesitate in assuming the potential energy con-
tained in a system to be negative. = 'When the amount of
a substance is represented by an -analytical expression, an
additive constant in the expression has the same importance
as the rest; but in the expression for the potential energy of a
system an additive constant never has any meaning. Lastly,
the amount of any substance 'contained in a physical system
can only depend upon the state of the system itself; but the
amount of potential energy contained in given matter depends
upon the presence of distant masses which perhaps have never
had any influence upon the system. If the universe, and
therefore the number of such distant masses, is infinite, then
the amount of many forms of potential energy contained in
even finite quantities of matter is infinitely great. All these
are difficulties which must be removed or avoided by the
desired definition of energy. We do not assert that such a
definition is impossible, but as yet we cannot say that it has
been framed. The most prudent thing to do will be to regard
it for the present as an open question, whether the system can
be developed in logically unexceptionable form.

It may be worth while discussing here whether there is
any justification for another objection which might be raised
as to the permissibility of this second system. In order that
an image of certain external things may in our sense be per-
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missible, not only must its characteristics be consistent amongst
themselves, but they must not contradict the .characteristics
of other images already established in our knowledge. On
the strength of this it may be said to be inconceivable that
Hamilton’s principle, or any similar proposition, should really
play the part of a fundamental law of mechanics, and be .a
fundamental law of nature. For the first thing that is to be
expected .of a fundamental law is simplicity and plainness,
whereas Hamilton’s principle, when we come to look into it,
proves to be an exceedingly complicated statement. Not only
does it make the present motion dependent upon consequences
which can only exhibit themselves in the future, thereby
attributing intentions to inanimate nature; but, what is much
worse, it attributes to nature intentions which are void of
meaning. For the integral, whose minimum is required by
Hamilton’s principle, has no simple physical meaning; and for
nature it is an unintelligible aim to make a mathematical
expression a minimum, or to bring its variation to zero. The
usual answer, which physics nowadays keeps ready for such
attacks, is that these considerations are based upon meta-
physical assumptions; that physics has renounced these, and
no longer recognises it as its duty to meet the demands of
metaphysics. It no longer attaches weight to the reasons
which used to be urged from the metaphysical side in favour
of principles which indicate design in nature, and thus it
cannot lend ear to objections of a metaphysical character
against these same principles. If we had to decide upon such
a matter we should not think it unfair to place ourselves rather
on the side of the attack than of the defence. A doubt which
makes an impression on our mind cannot be removed by calling
it metaphysical; every thoughtful mind as such has needs
which scientific men are accustomed to denote as metaphysical
Moreover, in the case in question, as indeed in all others, it is
possible to show what are the sound and just sources of our needs.
It is true we cannot @ priori demand from nature simplicity,
nor can we judge what in her opinion is simple. But with
regard to images of our own creation we can lay down require-
ments. We are justified in deciding that if our images are
well adapted to the things, the actual relations of the things
must be represented by simple relations between the images.
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And if the actual relations between the things can only be
represented by complicated relations, which are not even
intelligible to an unprepared mind, we decide that these
images are not sufficiently well adapted to the things. Hence
our requirement of simplicity does not apply to nature, but to
the images thereof which we fashion; and our repugnance to
a complicated statement as a fundamental law only expresses
the conviction that, if the contents of the statement are correct
and comprehensive, it can be stated in a simpler form by a
more suitable choice of the fundamental conceptions. The
same conviction finds expression in the desire we feel to
penetrate from the external acquaintance with such a law to
the deeper and real meaning which we are convinced it pos-
sesses. If this conception is correct, the objection brought
forward does really justify a doubt as to the system; but it
does not apply so much to its permissibility as to its appro-
priateness, and comes under consideration in deciding as to the
latter. However, we need not return to the consideration of this.

If we once more glance over the merits which we were
able to claim for this second image, we come to the conclusion
that as a whole it is not quite satisfactory. Although the
whole tendency of recent physics moves us to place the idea
of energy in the foreground, and to use it as the corner-stone
of our structure, it yet remains doubtful whether in so doing
we can avoid the harshness and ruggedness which were so
disagreeable in the first image. In fact I have discussed this
second mode of representation at some length, not in order to
urge its adoption, but rather to show why, after due trial, I
have felt obliged to abandon it.

IIT1

A third arrangement of the principles of mechanics is that
which will be explained at length in this book. Its principal
characteristics will be at once stated, so that it may be criti-
cised in the same way as the other two. It differs from
them in this important respect, that it only starts with three
independent fundamental conceptions, namely, those of time,
space, and mass. The problem which it has to solve is to
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represent the natural relations between these three, and
between these three alone. The difficulties have hitherto
been met with in connection with a fourth idea, such as the
idea of force or of energy; this, as an independent fundamental
conception, i8 here avoided. G. Kirchhoff has already made
the remark in his T'ext-book of Mechanics that three independent
conceptions are necessary and sufficient for the development of
mechanics. Of course the deficiency in the manifold which
thus results in the fundamental conceptions necessarily requires
some complement. In our representation we endeavour to fill
up the gap which occurs by the use of an hypothesis, which
is not stated here for the first time; but it is not usual to
introduce it in the very elements of mechanics. The nature
of the hypothesis may be explained as follows.

If we try to understand the motions of bodies around us,
and to refer them to simple and clear rules, paying attention
only to what can be directly observed, our attempt will in
general fail. ~We soon become aware that the totality of
things visible and tangible do not form an universe conform-
able to law, in which the same results always follow from the
same conditions. We become convinced that the manifold of
the actual universe must be greater than the manifold of the
universe which is directly revealed to us by our senses. If
we wish to obtain an image of the universe which shall be
well-rounded, complete, and conformable to law, we have to
presuppose, behind the things which we see, other, invisible
things—to imagine confederates concealed beyond the limits
of our senses. These deep-lying influences we recognised in
the first two representations; we imagined them to be entities
of a special and peculiar kind, and so, in order to represent
them in our image, we created the ideas of force and energy.
But another way lies open to us. We may admit that there
is & hidden something at work, and yet deny that this some-
thing belongs to a special category. We are free to assume
that this hidden something is nought else than motion and
mass a.gam,—motlon and mass which differ from the visible ones
not in themselves but in relation to us and to our usual means
of pereeptlon Now this mode of oonceptlon is just our hypo-

—th@sis.  We assume that it is possible to conjoin with the visible
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masses of the universe other masses obeying the same laws,
and of such a kind that the whole thereby becomes intelli-
gible and conformable to law. We assume .this to be possible
everywhere and in all cases, and that there are no causes
whatever of the phenomena other than those hereby admitted.
What we are accustomed to denote as force and as energy
now become nothing more than an action of mass and motion,
but not necessarily of mass and motion recognisable by our
coarsg Jsenses. Such explanations of force from processes of
motion are usually called dynamical; and we have every
reason for saying that physics at the present day regards such

explanations with great favour. The forces connected with-.
heat have been traced back with certainty to the concealed -

motions of tangible masses. Through Maxwell’s labours the

' supposition that electro-magnetic forces are due to the motion

of /concealed masses™has become almost a conviction. Lord
Kelvin-gives a prominent place to dynamical explanations of
force; in his theory of vortex atoms he has endeavoured to
present an image of the universe in accordance with this
conception. In his investigation of cyclical systems von
Helmholtz has treated the most important form of concealed
motion fully, and in a manner that admits of general applica-
tion ; through him “concealed mass” and “concealed motion ”
have become current as technical expressions in German.!
But if this hypothesis is capable of gradually eliminating the
mysterious forces from mechanics, it can also entirely prevent
their entering into mechanics. And if its use for the former
purpose is in accordance with present tendencies of physics,
the same must hold good of its use for the latter purpose.
This is the leading thought from which we start. By following
it out we arrive at the third image, the general outlines of
which will now be sketched.

We first introduce the three independent fundamental ideas
of time, space, and mass as objects of experience; and we
specify the concrete sensible experiences by which time,
mass, and space are to be determined. With regard to the
masses we stipulate that, in addition to the masses recog-
nisable by the senses, concealed masses can by hypothesis be

1 [ Verborgene Masse ; verborgene Bewegung.]
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introduced. We next bring together the relations which always
obtain between these concrete experiences, and which we have
to retain as the essential relations between the fundamental
ideas. To begin with, we naturally connect the fundamental
ideas in pairs. Relations between space and time alone form
the subject of kinematics. There exists no connection between
mass and time alone. Experience teaches us that between
mass and space there exists a series of important relations.
For we find certain purely spacial connections between the
masses of nature: from the very beginning onwards through
all time, and therefore independently of time, certain positions
and certain changes of position are prescribed and associated
as possible for these masses, and all others as impossible.
Respecting these connections we can also assert generally that
they only apply to the relative position of the masses amongst
themselves ; and further that they satisfy certain conditions of
continuity, which find their mathematical expression in the
fact that the connections themselves can always be represented

“by homogeneous linear equations between the first differentials

of the magnitudes by which the positions of the masses are
denoted. To investigate in detail the connections of definite
material systems is not the business of mechanics, but of
experimental physics: the distinguishing characteristics which
differentiate the various material systems of nature from each
other are, according to our conception, simply and solely the
connections of their masses. TUp to this point we have only
considered the connections of the fundamental ideas in pairs:
we now address ourselves to mechanics in the stricter sense, in
which all three have to be considered together. We find that
their general connection, in accordance with experience, can be
epitomised in a single fundamental law, which exhibits a close

analogy with the usual law of inertia. In accordance with

the mode of expression which we shall use, it can be repre-
sented by the statement:—Every natural motion of an inde-
pendent material system consists herein, that the system follows
with uniform velocity one of its straightest paths. Of course this
statement only becomes intelligible when we have given the
necessary explanation of the mathematical mode of expression
used ; but the sense of the law can also be expressed in the
usual language of mechanics. The law condenses into one
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single statement the usual law of inertia and Gauss’s Principle
of Least Constraint. It therefore asserts that if the connections
of the system could be momentarily destroyed, its masses would
become dispersed, moving in straight lines with uniform velocity;
but that as this is impossible, they tend as nearly as possible
to such a motion. In our image this fundamental law is the
first proposition derived from experience in mechanics proper :
it is also the last. From it, together with the admitted
hypothesis of concealed masses and the normal connections,
we can derive all the rest of mechanics by purely deductive
reasoning. Around it we group the remaining general prin-
ciples, according to their relations to it and to each other, as
corollaries or as partial statements. We endeavour to show
that the contents of mechanics, when arranged in this way, do
not become less rich or manifold than its contents when it
starts with four fundamental conceptions; at any rate not less
rich or manifold than. is required for the representation of
nature. We soon find it convenient to introduce into our
system the idea of force. However, it is not as something
independent of us and apart from us that force now makes its
appearance, but as a mathematical aid whose properties are
entirely in our power. It cannot, therefore, in itself have any-
thing mysterious to us. Thus according to our fundamental law,
whenever two bodies belong to the same system, the motion of
the one is determined by that of the other. The idea of force
now comes in as follows. For assignable reasons we find it
convenient to divide the determination of the one motion by
the other into two steps. We thus say that the motion of the
first body determines a force, and that this force then deter-
mines the motion of the second body. In this way force
can with equal justice be regarded as being always a cause
of motion, and at the same time a consequence of motion.
Strictly speaking, it is & middle term conceived only between
two motions. According to this conception the general pro-
perties of force must clearly follow as a necessary consequence

of thought from the fundamental law; and if in possible

experiences we see these properties confirmed, we can in no
sense feel surprised, unless we are sceptical as to our funda-
mental law. Precisely the same is true of the idea of energy
and of any other aids that may be introduced.
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What has hitherto been stated relates to the physical con-
tent of the- image, and nothing further need be said with

-regard to this; but it will be convenient to give here a brief

explanation of the special mathematical form in which it will
be represented. The physical content is quite independent
of the mathematical form, and as the content differs from what
is customary, it is perhaps not quite judicious to present it in

.a form which is itself unusual. But the form as well as the

content only differ slightly from such as are familiar; and
moreover they are so suited that they mutually essist one
another. The essential characteristic of the terminology used
consists in this, that instead of always starting from single
points, it from the beginning conceives and considers whole
systems of points. Every one is familiar with the expressions
“ position of a system of points,” and “ motion of a system of
points.”  There is nothing unnatural in continuing this mode of
expression, and denoting the aggregate of the positions traversed
by a system in motion as its path. Every smallest part of this
path is then a path-element. Of two path-elements one can
be a part of the other: they then differ in magnitude and only
in magnitude. But two path-elements which start from the
same position may lelong to different paths. In this case
neither of the two forms part of the other: they differ in
other respects than that of magnitude, and thus we say that
they have different directions. It is true that these statements
do not suffice to determine without ambiguity the character-

" istics of “magnitude” and “direction” for the motion of a

system. But we can complete our definitions geometrically or
analytically so that their consequences shall neither contradict
themselves nor the statements we have made; and so that the
magnitudes thus defined in the geometry of the system shall
exactly correspond to the magnitudes which are denoted by the
same names in the geometry of the point,—with which, in-
deed, they always coincide when the system is reduced to a
point. Having determined the characteristics of magnitude
and direction, we next call the path of a system straight if
all its elements have the same direction, and curved if the
direction of the elements changes from position to position.
As in the geometry of the point, we measure curvature by the
rate of variation of the direction with position. From these
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definitions we at once get a whole series of relations; and the
number of these increases as soon as the freedom of motion of
the system under consideration is limited by its connections,
Certain classes of paths which are distinguished among the
possible ones by peculiar simple properties then claim special
attention. Of these the most important are those paths which
at each of their positions have the least possible curvature :
these we shall denote as the straightest paths of the system.
These are the paths which are referred to in the fundamental
law, and which have already been mentioned in stating
it. Another important type consists of those paths which
form the shortest connection between any two of their posi-
tions: these we shall denote as the shortest paths of the
system. Under certain conditions the ideas of straightest and
shortest paths coincide. The relation is perfectly familiar in
connection with the theory of curved surfaces; nevertheless it
does not hold good in general and under all circumstances.
The compilation and arrangement of all the relations which
arise here belong to the geometry of systems of points. The
development of this geometry has a peculiar mathematical
attraction ; but we only pursue it as far as is required for the
immediate purpose of applying it to physics. A system of n
points presents a 3n-manifold of motion,—although this may
be reduced to any arbitrary number by the connections of the
system. Hence there arise many analogies with the geometry
of space of many dimensions; and these in part extend so far
that the same propositions and notations can apply to both.
But we must note that these analogies are only formal, and
that, although they occasionally have an unusual appearance,
our considerations refer without exception to concrete images
of space as perceived by our senses. Hence all our statements
represent possible experiences ; if necessary, they could be con-
firmed by direct experiments, viz. by measurements made with
models. Thus we need not fear the objection that in building
up a science dependent upon experience, we have gone outside
the world of experience. On the other hand, we are bound to
answer the question how a new, unusual, and comprehensive
mode of expression justifies itself; and what advantages we
expect from using it. In answering this question we specify as
the first advantage that it enables us to render the most general
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and comprehensive statements with great simplicity and brevity.
In fact, propositions relating to whole systems' do not require
more words or more ideas than are usually employed in referring
to a single point. Here the mechanics of a material system no
longer appears as theexpansionand complication of themechanics
of a single point; the latter, indeed, does not need independent
investigation, or it only appears occasionally as a simplification
and a-special case. If it is urged that this simplicity is only
artificial, we reply that in no other way can simple relations
be secured than by artificial and well-considered adaptation of
our ideas to the relations which have to be represented. But
in this objection there may be involved the imputation that
the mode of expression is not only artificial, but far-fetched and
unnatural. To this we reply that there may be some justifica-
tion" for regarding the consideration of whole systems as being
more natural and obvious than the consideration of single points.
For, in reality, the material particle is simply an abstraction,
whereas the material system is presented directly to us. All
actual experience is obtained directly from systems; and it is
only by processes of reasoning that we deduce conclusions as
to possible experiences with single points. As a second merit,
although not a very important one, we specify the advantage
of the form in which our mathematical mode of expression
enables us to state the fundamental law. Without this we
should have to split it up into Newton’s first law and Gauss’s
principle of least constraint. Both of these together would
represent accurately the same facts; but in addition to these
facts they would by implication contain something more, and
this something more would be too much. In the first place
they suggest the conception, which is foreign to our system of
mechanics, that the connections of the material system might be
destroyed ; whereas we have denoted them as being permanent
and indestructible throughout. In the second place we cannot,
in using Gauss's principle, avoid suggesting the idea that we
are not only stating a fact, but also the cause of this fact.
We cannot assert that nature always keeps a certain quantity,
which we call constraint, as small as possible, without suggest-
ing that this quantity signifies something which is for nature
itself a constraint,—an uncomfortable feeling. We cannot
assert that nature acts like a judicious calculator reducing
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his observations, without suggesting that deliberate intention
underlies the action. There is undoubtedly a special charm
in such suggestions; and Gauss felt a natural delight in giving
" prominence to it in his beautiful discovery, which is of funda-
mental importance in our mechanies. Still, it must be con-
fessed that the charm is that of mystery; we do not really
believe that we can solve the enigma of the world by such
half-suppressed allusions. Our own fundamental law entirely
avoids any such suggestions. It exactly follows the form of
the customary law of inertia, and like this it simply states a
bare fact without any pretence of establishing it. And as it
thereby becomes plain and unvarnished, in the same degree
does it become more honest and truthful. Perhaps I am pre-
judiced in favour of the slight modification which I have made
in Gauss’s principle, and see in it advantages which will not
be manifest to others. But I feel sure of general assent when
I state as the third advantage of our method, that it throws a
bright light upon Hamilton’s method of treating mechanical
problems by the aid of characteristic functions. During the
sixty years since its discovery this mode of treatment has been
well appreciated and much praised; but it has been regarded
and treated more as a new branch of mechanics, and as if its
growth and development had to proceed in its own way and in-
dependently of the usual mechanics. In our form of the mathe-
matical representation, Hamilton’s method, instead of having the
character of a side branch, appears as the direct, natural, and,
if one may so say, self-evident continuation of the elementary
statements in all cases to which it is applicable.  Further, our
mode of representation gives prominence to this: that Hamil-
ton’s mode of treatment is not based, as is usually assumed, on
the special physical foundations of mechanics; but that it is
fundamentally a purely geometrical method, which can be
established and developed quite independently of mechanics,
and which has no closer connection with mechanics than any
other of the geometrical methods employed in it. It has long
since been remarked by mathematicians that Hamilton’s method
contains purely geometrical truths, and that a peculiar mode of
expression, suitable to it, is required in order to express these
clearly. But this fact has only come to light in a somewhat
perplexing form, namely, in the analogies between ordinary
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mechanics and the geometry of space of many dimensions, which
have been discovered by following out Hamilton’s thoughts.
Our mode of expression gives a simple and intelligible
explanation of these analogies. It allows us to take advantage
of them, and at the same time it avoids the unnatural ad-
mixture of supra-sensible abstractions with a branch of physics.

‘We have now sketched the content and form of our third
image as far as can be done without trenching upon the con-
tents of the book; far enough to enable us to submit it to -
criticism in respect of its permissibility, its correctness, and
its appropriateness. I think that as far as logical permis-
sibility is concerned it will be found to satisfy the most rigid
requirements, and I trust that others will be of the same
opinion. This merit of the representation I consider to be
of the greatest importance, indeed of unique importance.
Whether the image is more appropriate than another; whether
it is capable of including all future experience; even whether
it only embraces all present experience, all this I regard
almost as nothing compared with the question whether it is
in itself conclusive, pure and free from contradiction. For I
have not attempted this task because mechanics has shown
signs of inappropriateness in its applications, nor because it
in any way conflicts with experience, but solely in order to
rid myself of the oppressive feeling that to me its elements
were not free from things obscure and unintelligible. What
I have sought is not the only image of mechanics, nor yet the
best image ; I have only sought to find an intelligible image
and to show by an example that this is possible and what it
must look like. We cannot attain to perfection in any direc-
tion; and I must confess that, in spite of the pains I have
taken with it, the image is not so convincingly clear but that
in some points it may be exposed to doubt or may require
defence. And yet it seems to me that of objections of a
general nature there is only a single onme which is so per-
tinent that it is worth while to anticipate and remove it.
It relates to the nature of the rigid connections which we
assume to exist between the masses, and which are abso-
lutely indispensable in our system. Many physicists will
at first be of opinion that by means of these connections

D
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forces are introduced into the elements of mechanics, and
are introduced in a way which is secret, and therefore not
permissible.  For, they will assert, rigid connections are
not conceivable without forces; they cannot come into
existence except by the action of forces. To this we reply——
Your assertion is correct for the mode of thought of ordinary
mechanics, but it is not correct independently of this mode of
thought ; it does not carry conviction to a mind which con-
siders the facts without prejudice and as if for the first time.
Suppose we find in any way that the distance between two
material particles remains constant at all times and under all
circumstances. We can express this fact without making use
of any other conceptions than those of space; and the value
of the fact stated, as a fact, for the purpose of foreseeing
future experience and for all other purposes, will be inde-
pendent of any explanation of it which we may or may not
possess. In no case will the value of the’fact be increased,
or our understanding of it improved, by putting it in the
form— Between these masses there acts a force which keeps
them at a constant distance from one another,” or “ Between
them there acts a force which makes it impossible for their
distance to alter from its fixed value.” But it will be urged
that this latter explanation, although apparently only a
ludicrous circumlocution, is nevertheless correct. For all the
connections of the actual world are only approximately rigid ;
and the appearance of rigidity is only produced by the action
of the elastic forces which continually annul the small
deviations from the position of rest. To this we reply as
follows :—With regard to rigid connections which are only
approximately realised, our mechanics will naturally only state
as a fact that they are approximately satisfied; and for the
purpose of this statement the idea of force is not required.
If we wish to proceed to-a second approximation and to take
into consideration the deviations, and with them the elastic
forces, we shall make use of a dynamical explanation for
these as for all forces. In seeking the actual rigid connections we
shall perhaps have to descend to the world of atoms. But such
considerations are out of place here; they do not affect the
question whether it is logically permissible to treat of fixed con-
nections as independent of forces and precedent to them. All
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that I wished to show was that this question must be answered
in the affirmative, and this I believe I have done. This being so,
we can deduce the properties and behaviour of the forces from the
nature of the fixed connections without being guilty of a petitio
principis.  Other objections of a similar kind are possible, but
I believe they can be removed in much the same way.

By way of giving expression to my desire to prove the
logical purity of the system in all its details, I have thrown
the representation into the older synthetic form. For this
purpose the form used has the merit of compelling us to
specify beforehand, definitely even if monotonously, the logical
value which every important statement is intended to have.
This makes it impossible to use the convenient reservations
and ambiguities into which we are enticed by the wealth of
combinations in ordinary speech. But the most important
advantage of the form chosen is that it is always based upon
what has already been proved, never upon what is to be
proved later on: thus we are always sure of the whole chain
if we sufficiently test each link as we proceed. In this
respect I have endeavoured to carry out fully the obligations
imposed by this mode of representation. At the same time
it is obvious that the form by itself is no guarantee against
error or oversight; and I hope that any chance defects will not
be the more harshly criticised on account of the somewhat
presumptuous mode of presentation. I trust that any such
defects will be capable of improvement and will not affect any
important point. Now and again, in order to avoid excessive
prolixity, I have consciously abandoned to some extent the
rigid strictness which this mode of representation properly
requires. Before proceeding to mechanics proper, as depend-
ent upon physical experience, I have naturally discussed
those relations which follow simply and necessarily from the
definitions adopted and from mathematics; the connection

" of these latter with experience, if any, is of a different nature

from that of the former. Moreover, there is no reason why
the reader should not begin with the second book. The
matter with which he is already familiar and the clear analogy
with the dynamics of a particle will enable him easily to guess
the purport of the propositions in the first book. If he admits
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the appropriateness of the mode of expression used, he can at
any time return to the first book to convince himself of its
permissibility. .

‘We next turn to the second essential requirement which
our image must satisfy. In the first place there is no doubt
that the system correctly represents a very large number of
natural motions. But this does not go far enough; the system
must include all natural motions without exception. I think
that this, too, can be asserted of it; at any rate in the sense
that no definite phenomena can at present be mentioned which
would be inconsistent with the system. We must of course
admit that we cannot extend a rigid examination to all
phenomena. Hence the system goes a little beyond the
results of assured experience; it therefore has the character
of a hypothesis which is accepted tentatively and awaits
sudden refutation by a single example or gradual confirmation
by a large number of examples. There are in especial two
places in which we go beyond assured experience: firstly,
in our limitation of the possible connections; secondly, in
the dynamical explanation of force. What right have we to
assert that all natural connections can be expressed by linear
differential equations of the first order? With us this
assumption is not a matter of secondary importance which we
might do without. Our system stands or falls with it; for it
raises the question whether our fundamental law is applicable:
to connections of the most general kind. And yet connections
of a more general kind are not only conceivable, but they are
permitted in ordinary mechanics without hesitation. There
nothing prevents us from investigating the motion of a point
where its path is only limited by the supposition that it makes
a given angle with a given plane, or that its radius of curva-
ture is always proportional to another given length. These
are conditions which are not permissible in our system. But
why are we certain that they are debarred by the nature of
things? We might reply that these and similar connections
cannot be realised by any practical mechanism; and in this
respect we might appeal to the great authority of Helmholtz’s
name. But in every example possibilities might be over-
looked; and ever so many examples would not suffice to
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substantiate the general assertion. It seems to me that the
reason for our conviction should more properly be stated as
follows. All connections of a system which are not embraced
within the limits of our mechanics, indicate in one sense or
another a discontinuous succession of its possible motions.
But as a matter of fact it is an experience of the most general
kind that nature exhibits continuity in infinitesimals every-
where and in every sense: an experience which has crystallised
into firm conviction in the old proposition—Natura non facit
saltus. In the text I have therefore laid stress upon this:
that the permissible connections are defined solely by their
continuity ; and that their property of being represented by
equations of a definite form is only deduced from this. We
cannot attain to actual certainty in this way. For this old
proposition is indefinite, and we cannot be sure how far it
applies—how far it is the result of actual experience, and how
far the result of arbitrary assumption. Thus the most con-
scientious plan is to admit that our assumption as to the
permissible connections is of the nature of a tentatively
accepted hypothesis. The same may be said with respect to
the dynamical explanation of force. 'We may indeed prove
that certain classes of concealed motions produce forces which,
like actions-at-a-distance in nature, can be represented to any
desired degree of approximation as differential coefficients of
force-functions. It can be shown that the form of these force-
functions may be of a very general nature; and in fact we do
not deduce any restrictions for them. But on the other hand
it remains for us to prove that any and every form of the force-
functions can be realised; and hence it remains an open question
whether such a mode of explanation may not fail to account for
some one of the forms occurring in nature. Here again we can
only bide our time so as to see whether our assumption is refuted,
or whether it acquires greater and greater probability by the
absence of any such refutation. We may regard it as a good
omen that many distinguished physicists tend more and more
to favour the hypothesis. I may mention Lord Kelvin's
theory of vortex-atoms: this presents to us an image of the
material universe which is in complete accord with the
principles of our mechanics. And yet our mechanics in no
wise demands such great simplicity and limitation of assump-
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tions as Lord Kelvin has imposed upon himself. We need not
abandon our fundamental propositions if we were to assume that
the vortices revolved about rigid or flexible, but inextensible,
nuclei; and instead of assuming simply incompressibility
we might subject the all-pervading medium to much more
complicated conditions, the most general form of which would
be a matter for further investigation. Thus there appears to
be no reason why the hypothesis admitted in our mechanics
should not suffice to explain the phenomena.

‘We must, however,’ make one reservation. In the text we
take the natural precaution of expressly limiting the range of
our mechanics to inanimate nature; how far its laws extend
beyond this we leave as quite an open question. As a matter
of fact we cannot assert that the internal processes of life
follow the same laws as the motions of inanimate bodies;
nor can we assert that they follow different laws. According
to appearance and general opinion there seems to be a
fundamental difference. And the same feeling which impels
us to exclude from the mechanics of the inanimate world as
foreign every indication of an intention, of a sensation, of
pleasure and pain,—this same feeling makes us unwilling to
deprive our image of the animate world of these richer and
more varied conceptions. Our fundamental law, although it
may suffice for representing the motion of inanimate matter,
appears (at any rate that is one’s first and natural impression)
too simple and narrow to account for even the lowest processes
of life. It seems to me that this is not a disadvantage, but
rather an advantage of our law. For while it allows us to
survey the whole domain of mechanics, it shows us what are
the limits of this domain. By giving us only bare facts,
without attributing to them any appearance of necessity, it
enables us to recognise that everything might be quite different.
Perhaps such considerations will be regarded as out of
place here. It is not usual to treat of them in the elements of
the customary representation of mechanics. But there the
complete vagueness of the forces introduced leaves room for
free play. There is a tacit stipulation that, if need be, later
on a contrast between the forces of animate and inanimate
nature may be established. In our representation the outlines
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of the image are from the first so sharply delineated, that any
subsequent perception of such an important division becomes
almost impossible. We are therefore bound to refer to this
matter at once, or to ignore it altogether. '

As to the appropriateness of our third image we need not
say much. In respect of distinctness and simplicity, as the
contents of the book will show, we may assign to it about the
same position as to the second image; and the merits to which
we drew attention in the latter are also present here. But the
permissible possibilities are somewhat more extensive than in
the second image. For we pointed out that in the latter certain
rigid connections were wanting; by our fundamental assump-
tions these are not excluded. And this extension is in accord-
ance with nature, and is therefore a merit; nor does it prevent
us from deducing the general properties of natural forces, in
which lay the significance of the second image. The simplicity
of this image, as of the second, is very apparent when we
consider their physical applications. Here, too, we can confine
our consideration to any characteristics of the material system
which. are accessible to observation. From their past changes
we can deduce future ones by applying our fundamental law,
without any necessity for knowing the positions of all the
separate masses of the system, or for concealing our ignorance
by arbitrary, ineffectual, and probably false hypotheses. But
as compared with the second image, our third ome exhibits
simplicity also in adapting its conceptions so closely to
nature that the essential relations of nature are represented by
simple relations between the ideas. This is seen not only in
the fundamental law, but also in its numerous general corol-
laries which correspond to the so-called principles of mechanics.
Of course it must be admitted that this simplicity only obtains
when we are dealing with systems which are completely known,
and that it disappears as soon as concealed masses come in. But
even in these cases the reason of the complication is perfectly
obvious. The loss of simplicity is not due to nature, but to
our imperfect knowledge of nature. The complications which
arise are not simply a possible, but a necessary result of our
special assumptions. It must also be admitted that the
co-operation of concealed masses, which is the remote and special
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case from the standpoint of our mechanics, is the commonest
case in the problems which occur in daily life and in the arts.
Hence it will be well to point out again that we have only
spoken of appropriateness in a special sense—in the sense of a
mind which endeavours to embrace objectively the whole of
our physical knowledge without considering the accidental
position of man in nature, and to set forth this knowledge in
a simple manner. The appropriateness of which we have
spoken has no reference to practical applications or the needs
of mankind. In respect of these latter it is scarcely possible
that the usual representation of mechanics, which has been
devised expressly for them, can ever be replaced by a more
appropriate system. Our representation of mechanics bears
towards the customary one somewhat the same relation that the
systematic grammar of a language bears to a ‘grammar devised
for the purpose of enabling learners to become acquainted as
quickly as possible with what they will require in daily life.
The requirements of the two are very different, and they must
differ widely in their arrangement if each is to be properly
adapted to its purpose.

In conclusion, let us glance once more at the three images
of mechanics which we have brought forward, and let us try
to make a final and conclusive comparison between them.
After what we have already said, we may leave the second
image out of consideration. We shall put the first and third
images on an equality with respect to permissibility, by
assuming that the first image has been thrown into a form
completely satisfactory from the logical point of view. This
we have already assumed to be possible. We shall also put
both images on an equality with respect to appropriateness, by
assuming that the first image has been rendered complete by
suitable additions, and that the advantages of both in different
directions are of equal value. 'We shall then have as our sole
criterion the correctness of the images: this is determined by the
things themselves and does not depend on our arbitrary choice.
And here it is important to observe that only one or the other
of the two images can be correct: they cannot both at the
same time be correct. For if we try to express as briefly as
possible the essential relations of the two representations, we
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come to this. The first image assumes as the final constant
elements in nature the relative accelerations of the masses with
reference to each other: from these it incidentally deduces
approximate, but only approximate, fixed relations between
their positions. The third image assumes as the strictly in-
variable elements of nature fixed relations between the posi-
tions : from these it deduces when the phenomena require it
approximately, but only approximately, invariable relative
accelerations between the masses. Now, if we could perceive
natural motions with sufficient accuracy, we should at once know
whether in them the relative acceleration, or the relative rela-
tions of position, or both, are only approximately invariable.
We should then know which of our two assumptions is false ;
or whether both are false; for they cannot both be simul-
taneously correct. The greater simplicity is on the side of
- the third image. 'What at first induces us to decide in favour
of the first is the fact that in actions-at-a-distance we can
actually exhibit relative accelerations which, up to the limits
of our observation, appear to be invariable; whereas all fixed
connections between the positions of tangible bodies are soon
and easily perceived by our senses to be only approximately
constant. But the situation changes in favour of the third
image as soon as a more refined knowledge shows us that the
assumption of invariable distance-forces only yields a first
approximation to the truth; a case which has already arisen
in the sphere of electric and magnetic forces. And the balance
of evidence will be entirely in favour of the third image
when a second approximation to the truth can be attained by
tracing back the supposed actions-at-a-distance to motions in
an all-pervading medium whose smallest parts are subjected to
rigid connections; a case which also seems to be nearly
realised in the same sphere. This is the field in which the
decisive battle between these different fundamental assumptions
of mechanics must be fought out. But in order to arrive at
such a decision it is first necessary to consider thoroughly the
existing possibilities in all directions. To develop them in
one special direction is the object of this treatise,—an object
which must necessarily be attained even if we are still far
from a possible decision, and even if the decision should finally
prove unfavourable to the image here developed.



A0




BOOK I

GEOMETRY AND KINEMATICS OF
MATERIAL SYSTEMS



VL.




BOOK I

GEOMETRY AND KINEMATICS OF
MATERIAL SYSTEMS






1. Prefatory Note. The subject-matter of the first
book is completely independent of experience. All the asser-
tions made are @ priori judgments in Kant’s sense. They are
based upon the laws of the internal intuition of, and upon the
logical forms followed by, the person who makes the asser-
tions; with his external experience they have no other con-
nection than these intuitions and forms may have.

CHAPTER 1
TIME, SPACE, AND MASS
2. Explanation. The time of the first book is the time

of our internal intuition. It is therefore a quantity such that
the variations of the other quantities under consideration may

be regarded as dependent upon its variation ; whereas in itself —
. it is always an independent variable.

The space of the first book is space as we conceive it.
It is therefore the space of Euclid’s geometry, with all the
properties which this geometry ascribes to it. It is immaterial
to us whether these properties are regarded as being given by
the laws of our internal intuition, or as consequences of thought
which necessarily follow from arbitrary definitions.

The mass of the first book will be introduced by a defini-
tion.

3. Deflnition 1. A material particle is a characteristic
by which we associate without ambiguity a given point in

—
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space at a given time with a given point in space at any other
time.

Every material particle is invariable and indestructible.
The points in space which are denoted at two different times
by the same material particle, coincide when the times coincide.
Rightly understood, the definition implies this.

4. Definition 2. The number of material particles in any
space, compared with the number of material particles in some
chosen space at a fixed time, is called the mass contained in the
first space.

‘We may and shall consider the number of material particles
in the space chosen for comparison to be infinitely great. The
mass of the separate material particles will therefore, by the
definition, be infinitely small. The mass in any given space
may therefore have any rational or irrational value.

5. Definition 3. A finite or infinitely small mass, con-
ceived as being contained in an infinitely small space, is called
a material point.

A material point therefore consists of any number of
material particles connected with each other. This number is
always to be infinitely great: this we attain by supposing the
material particles to be of a higher order of infinitesimals than
those material points which are regarded as being of infinitely
small mass. The masses of material points, and in especial
the masses of infinitely small material points, may therefore
bear to one another any rational or irrational ratio.

6. Deflnition 4. A number of material points considered
simultaneously is called a system of material points, or briefly
a system. The sum of the masses of the separate points is, by
§ 4, the mass of the system.

Hence a finite system consists of a finite number of finite
material points, or of an infinite number of infinitely small
material points, or of both. It is always permissible to regard
a system of material points as being composed of an infinite
number of material particles.

7. Observation 1. In what follows we shall always treat
a finite system as consisting of a finite number of finite material
points. But as we assign no upper limit to their number, and
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no lower limit to their mass, our general statements will also
include as a special case that in which the system contains an
infinite number of infinitely small material points. We need
not enter into the details required for the analytical treatment
of this case.

8. Observation 2. A material point can be regarded as a
special case and as the simplest example of a system of material
points.



CHAPTER 1I
POSITIONS AND DISPLACEMENTS OF POINTS AND SYSTEMS

Position

9. Definition 1. The point of space which is indicated by
a given particle at a given time is called the position of the
particle at that time. The position of a material point is the
common position of its particles.

10. Definition 2. The aggregate of the positions which all
the points of a system simultaneously occupy is called the
position of the system.

11. Deflnition 3. Any given position of a material point .

in infinite space is called a geometrically conceivable, or for
shortness a conceivable, position of the point. The aggregate
of any conceivable positions whatsoever of the points of a
system is called a conceivable position of the system.

At any time two particles may differ as to their position,
two material points as to their mass and their position, and
two systems of material points as to the number, the mass,
and the positions of their points. But, in accordance with the
definitions which we have already given of them, particles,
material points, and systems of material points cannot differ in
any other respect.

12. Analytical Representation of the Position (z) of a
Point.—The position of a material point can be represented
analytically by means of its three rectangular coordinates
referred to a set of fixed axes. These coordinates will always

be denoted by z, x,,#;. Every conceivable position of the point

——t
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- implies a singly-determined value-system of these coordinates,

and conversely every arbitrarily chosen value-system of the
coordinates implies a singly-determined conceivable position of
the point.

The position of a point can also be represented by any r
quantities p,.. p,...p, whatsoever, provided we agree to
associate continuously a given value-system of these quantities
with a given position of the point, and conversely. The rect-
angular coordinates are then functions of these quantities, and
conversely. The quantities p, are called the general coordinates
of the point. If r>3, then for geometrical reasons »—3
equations must exist between the quantities p, which enable
us to determine these quantities as functions of three inde-
-pendent quantities, for instance, @, z,, z, However, we shall
exclude dependence of the coordinates on one another on
account of purely geometrical relations, and consequently it
must always be understood that »< 3. If <3, then all con-
ceivable positions of the point cannot be represented by means
of p,, but only a portion of these positions. The positions
not expressed in terms of p, will be considered as being eo ipso
excluded from discussion whilst we are using the coordinates p,.

13. Analytical Representation () of a System.—The
position of a system of 7z material points can be analytic-
ally represented by means of the 3» rectangular coordinates of
the points of the system. These coordinates will be denoted
by x, z,..2,...2,, so that z,, z,, z, are the coordinates of the
first point, x,,_, %, %, the coordinates of the u™ point.
We shall call these 3n coordinates z,, the rectangular coor-
dinates of the system. Every conceivable position of the system
implies a singly-determined value-system of its rectangular
coordinates, and conversely every arbitrarily chosen value-system
of z, a singly-determined conceivable position of the system.

We may also consider the system as determined by means
of any r quantities p, ..p,..p, whatever, as long as we agree
to associate continuously a given value-system of these coordi-
nates with a given position of the system, and conversely.
The rectangular coordinates are therefore functions of these
quantities, and conversely. The quantities p, are called the
general coordinates of the system. If 7>3n, then for

E
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geometrical reasons r— 3n equations must exist between p,
However, we shall assume that no geometrical relations exist
between p,, and consequently » £ 3n. If » < 3n, then all con-
ceivable positions of the system cannot be expressed in terms
of p,, but only a portion of them. Those positions not ex-
pressed in terms of p, will be considered as being eo ipso
excluded from consideration when we are using the general
coordinates p,.

Configuration and Absolute Position

14. Definition 1. The aggregate of the relative positions of
the points of a system is called the configuration of the system.

The configuration of the system and the absolute position
of the configuration in space determine together the position
of the system.

15. Deflnition 2. By a coordinate of configuration we
mean any coordinate of the system whose value cannot change
without the configuration of the system changing.

‘Whether a given coordinate is a coordinate of configura-
tion or not does not depend on the choice of the remaining
coordinates of the system.

16. Definition 3. By a coordinate of absolute position
we mean any coordinate of the system through whose change
the configuration of the system cannot be altered so long as
the remaining coordinates of the system do not alter.

Whether a given coordinate is & coordinate of absolute
. position or not depends therefore on the choice of the remain-
ing coordinates. ‘
' Corollaries

17. 1. A coordinate cannot be at one and the same time
both a coordinate of configuration and a coordinate of absolute
position. On the other hand, a given coordinate can and in
general will be neither a coordinate of configuration nor a
coordinate of absolute position.

18. 2. So long as n>3,in every position 37 independent
coordinates can be chosen in various ways, so that there are as
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many as 3n — 6 coordinates of configuration amongst them, but
in no way so as to include more than 3n — 6 such coordinates.

For, let us choose from the coordinates the three distances
of any three points of the system from each other, and the
3(n— 3) distances of the remaining points from them; then
we have (3n—6) coordinates of configuration; and any
(3n— 6) different functions of these distances give (37— 6)
coordinates of configuration of the system. Fewer coordinates
of configuration can exist; for example, if we take the 3n
rectangular coordinates, none exist. But there cannot be more
than (3n —6) coordinates of configuration amongst inde-
pendent coordinates; for if, amongst the given coordinates
of a system, there were more than (3n— 6) coordinates of
configuration, then the latter could be expressed in terms of
these (37 — 6) distances, and consequently would not be inde-
pendent of one another.

19. 3. So long as n>3, 3n independent coordinates for all
conceivable positions of a system can be chosen in various ways
8o that there are amongst them as many as 6, but not more
than 6 coordinates of absolute position.

For, let us choose the coordinates in such a manner that
there are amongst them (37 — 6) coordinates of configuration,
and take with them any 6 coordinates, say 6 of the rect-
angular coordinates of the system; then the last are eo ipso
coordinates of absolute position, for no change in them changes
the configuration so long as the rest are fixed. Fewer than 6
may exist; none exist, for instance, when we use the rect-
angular coordinates of the system. More than 6 cannot exist.
For did more than 6 exist, then, for a particular choice of the
coordinates, all conceivable configurations of the system would
be determined by the remaining fewer than 3n — 6 coordinates ;
and consequently there would not be left (37 — 6) coordinates
of configuration independent of one another for the system,
which would be contrary to § 18.

20. 4. If 3n independent coordinates of a system of =
points are so chosen that there are amongst them (37— 6)
coordinates of configuration, then the remaining 6 are neces-
sarily coordinates of absolute position. And if these 3n co-
ordinates are so chosen that 6 of them are coordinates of absolute
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position, then the remaining (37 — 6) are necessarily coordinates
of configuration.

For, if there were amongst the latter even one which could
be changed without altering the configuration of the system, then
the absolute position of the configuration would be determined
by more than 6 independent coordinates, which is impossible.

21. 5. Any quantity can be used as a coordinate of absolute
position, provided its change alters the position of the system,
and provided it is not itself a coordinate of configuration. Any
6 quantities which satisfy these conditions and are inde-
pendent of one another, can be taken as coordinates of absolute
position, and become coordinates of absolute position by the
fact that no other quantities are associated with them as
coordinates unless they have the properties of coordinates of
configuration.

Finite Displacements
(@) Of Points

22. Definition 1. The passage of a material point from an
initial to a final position, without regard to the time or manner
of the passage, is called a displacement of the point from the
initial position to the final one.

The displacement of a point is completely determined by
its initial and final position. It is also completely known
when we are given its initial position, its direction, and its
magnitude.

23. Observation 1. The magnitude of the displacement
of a point is equal to the distance of its final position from its
initial one. Let the quantities #, be the rectangular coordi-
nates of its initial position, and z,” the rectangular coordinates
of its final position, then the magnitude & of the displace-
ment is the positive root of the equation

s
2= Zv(x,' —a,)2
1

24. Observation 2, The direction of a displacement is
the direction of a straight line which is drawn from the initial



u FINITE DISPLACEMENTS 53

position of the point to the final one. Let &, ,, , have the
same meaning as before, and let z,°, z,”, " be the coordinates
of the initial and final positions, and the length of a second

A
displacement, then the angle s's” between the two displacements
is given by the equation

)
¢s" cos s/';" = zv(ac,’ —z)(z,” —x,°) ().
1

For, if we consider a triangle whose sides are equal in length

A
to & and 5", and the included angle equal to &s”, we obtain
the equation

8
P+ 244 000 8 = Dil(e )= @~ ()
1

from which, together with § 23, equation (i) follows.

25. Deflnition 2. Two displacements of a point are said
to be identical when they have the same initial and final posi-
tions; two displacements of a point are said to be equal when
they have the same magnitude and direction ; they are said to
be parallel when they have the same direction.

26. Note. ILet z, ,...x, denote the % rectangular coor-
dinates of a point in space of % dimensions, z/, z,’. .., the
coordinates of a second point; then the additional statement
that the distance between the two points is the positive root
of the equation

k
#= 2w/ — )

extends the whole of the following investigation, as well as
the whole of mechanics, to space of % dimensions, without
necessitating anything but a change in the wording. No use
will be made of this remark, but the investigation will refer,
as stated at the beginning, simply to the space of Euclidian

geometry.
(b) Of Systems

27. Definition. The passage of a system of material points
from an initial position to a final one without regard to the time
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or manner of the passage is called a displacement of the system
from the initial to the final position.

The displacement of a system is completely knowa when
we know its initial and final positions. It is also completely
known when its initial position, and what are termed its direc-

‘\‘::\tion and magnitude, are given.

4
VS/ 28. Notation. It will be convenient to call the positive
root of the arithmetic mean of the squares of a series of
quantities their quadratic mean value.

. 29. Definition & The magnitude of the displacement of
N asystem is the quadratic mean value of the magnitudes of the
- 1“%‘\ displacements of all its ic
o 4‘/ The magnitude of the displacement which a system under-
g7 > goes in moving from one position to another is called the
distance between the two positions. The magnitude of a
displacement is also called its length.

30. Note. The distance between two positions of a
system is defined independently of the form of its analytical
representation, and in particular is independent of the choice
of the coordinates of the system,

31. Problem. To express the distance between two posi-
tions of a system in terms of its rectangular coordinates.

Let there be n material points in the system. Let z, be
the value of one of the rectangular coordinates of the system
before the displacement, and z,” the value of the same after the
displacement. The coordinate z, is at the same time a co-
ordinate of one of the points of the system: let the mass of
this point be m,, » ranges from 1 to 3n, but all the m/s are
not unequal, since for every u from 1 to 3n

If now # be the number of particles in the unit of mass, the
mass m, contains m gy particles, and the whole mass m of the
system m.n. Consequently, with this notation, the quadratic
mean value & of the displacements of all particles is the
positive root of the equation
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an = Zm (@, —a,) 3( @),

and this root is therefore the required distance. Finally
8n
m=3 Dvm, (ii).
1

32. Proposition. The distance between two positions of
a system is always smaller than the sum of the distances of
the two positions from a third. .

Let the quantities z,/, z,”, " be the rectangular coor-
dinates of the positions 1, 2, 3 ; let s, 5,,, s, be their distances
from each other. For shortness write ‘

’J "—b!(xv”, - wv’) = av /m (x ”, ” "
m
8n 8n
then s % = zu.a,,’ 8= 2’ b 8= 2"("’ —b5,)%. 1If then
1 1

it were possible that s, >s,+s, we should get on squaring

2 : .
8y — 8, E—8, 2> 23313'333’ and on squaring again,

48,.%,%— (s, —8,.2—3,1"<0.

18 "28 -

This is, however, impossible, for, on substituting the values
of 8 given as above, the left-hand side becomes

Sn  3n

Q\ \ 2’2“(“vbu - aubv)z'

which, being a sum of squares, is necessarily positive. There-
fore our assumption was unwarranted, and consequently

8, < 8+ 8y

33. Oorollary. It is therefore always possible to con-
struct & plane triangle whose three sides are equal to the three
distances of any three positions of a system from each other.

34. Definition b, The difference in direction between two
displacements of a system from the same initial position is the
included angle of a plane triangle which has the lengths of the
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two displacements as sides, and whose base is the distance

. between their final positions.

The difference in direction between two displacements is
also called the angle between them, or their inclination towards
one another.

35. Note 1. The inclination towards one another of two
displacements with the same initial position is in all cases a
singly-determined real angle, smaller than .

For the triangle which determines that angle can always
(§ 32) be drawn.

36. Note 2. The difference in direction between two
displacements is defined independently of the form of the
analytical representation, and in particular is independent of
the choice of the coordinates used.

37. Problem. To express the angle between two displace-
ments from the same initial position in terms of the rectangular
coordinates of the initial and final positions.

Let the quantities z, be the coordinates of the common
initial positions, z,’ and z,” the coordinates of the two final

positions, s and s" the lengths of the two displacements, sg" the
included angle. By consideration of the plane triangle whose
three sides are the three distances between the three positions,
we obtain

A 8n 8n
" /! ’ n
2md's” cos &’s" = Svm,(w,, —x,)2+ Ev m(z,’ —z,)?
1 1

- ﬁ:m.[<x," —z)— @/ -z,

and therefore
8n

A
ms's’ cos8's’ = Dom,(z," —a,) (2, ~z,) (),
1

in which equation we consider ¢ and s” expressed as in § 31
(i) in terms of the rectangular coordinates.

38. Proposition. Two displacements of a system from
the same initial position have the angle between them equal to
zero when the displacements of the individual points 6 both
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the systemj are parallel and 'correspondingly proportional, and ‘

conversely.

For, if the displacements of all points are parallel and pro- |

portional, then for all values of »

xv” —&, = e(x,' -z,), .
where ¢ is the same constant factor for all values of ». The
right-hand side of equation § 37 (i) becomes therefore mes’.
Moreover s” = ¢ ; thus by this equation cos s's” =1, and since
34;” is an interior angle of a triangle 8's” =0 (§ 35).

Conversely when s's” = 0, cos §'s” = 1, and then the equation

37 (i) squared gives when the values of & and s" are sub-
stituted

0= [21- m(@,” - z,)(@, - 2)F - Drm, @, - x,)*.E; my(a, - )

- 21'21“ "”'.,m“[(:v," - xv)(xu, - -‘b“) - (wn” - ﬂ-)(xv’ - v)]z»

and this is only possible when for every value of x and »

" ’
T, T, L, =,
" =77 ’
x’ — a,' xl’ — xv

wherefore the converse is proved.

39. Oorollary 1. If two displacements from the same
initial position have their inclinations to a third displacement
from the same initial position zero, then their inclination to
one another is zero.

All displacements whose inclinations to any given dis-
placement are zero, have consequently their inclinations to
each other zero. The common property of all such displace-
ments is called their direction.

40. Oorollary 2. When two displacements of a system
have the same direction, they are equally inclined to a third
displacement.

Thus all displacements from the same initial position, and
having the same direction, make the same angle with all
displacements which have another common direction. This

d
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angle is called the angle between the two directions or the
inclination of the two directions.

41. Deflnition. Two displacements of a system are said
to be identical when the displacements of the points of the two
systems are identical. Two displacements are equal when the
displacements of the individual points are equal and two
displacements are parallel when the displacements of the indi-
vidual points in both are parallel and correspondingly pro-
portional.

42. Corollary. Two displacements of a system from
different initial positions are parallel when each of them has
the same direction as a displacement which passes through its
initial position and is equal to the other displacement, and
conversely.

43. Additional Note. By the difference in direction
between two displacements of a system from different initial
positions we mean the angle between either of them, and a
parallel displacement to the other from its own initial position.

44. Problem. To express the angle between any two
displacements of a system in terms of the rectangular coor-
dinates of their four end positions.

Let & and s" be the magnitudes of the two displacements,

and 341\:” the angle between them. Let 2, and z,/ be the coor-
dinates of the initial and final positions of the first, z,° and =,”,
the coordinates of the initial and final positions of the second
displacement. A displacement whose initial coordinates are z,,
and whose final coordinates have the value z, +z,” — z,°, has the
same initial position as the first, and is equal to the second.
Hence it makes with the first the required angle, for which
we obtain the equation
A n
m\;’sr" cos ¢5" = zv m(z, —z,)z," —=z°).
1

The same value is obtained if we choose a displacement
through the initial position of the second, and equal to the first,
and then find the angle between this and the second.

Our definition in § 43 was thus unique, and therefore
permissible.
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45. Definition. Two displacements of a system are said
to be perpendicular to one another when the angle between
them is a right angle.

46. Corollary 1. The necessary and sufficient analytical
condition that two displacements should be perpendicular to
one another is the equation

8n

Ev m, xv, - wv)(xv” - wvo) =0,

1

in which use is made of the notation of §44.

47. Oorollary 2. In a system of n points there is from
a given position a (3n—1) manifold of displacements, and
therefore a (37 — 2) manifold of directions conceivable which
are perpendicular to a given direction.

48. Definition. The component of a displacement in a
given direction is a displacement whose direction is the given
direction, and whose magnitude is equal to the orthogonal pro-
jection of the magnitude of the given displacement upon the
given direction.

Thus, if the magnitude of the given displacement is s, and
it makes with the given direction the angle w, then its com-
ponent in this direction is equal to s cos w.

The magnitude of the component in a given direction will
be simply termed the component in that direction.

Composition of Displacements

49. Note. Let there be given to a system several dis-
placements, which are equal to given displacements, and which
are so related to one another that the final position of the pre-
ceding displacement is the initial position of the succeeding
one, then the final position attained is independent of the
succession of displacements.

Since this is true for the displacements which the indi-
vidual points suffer, it must also be true for the system.

50. Deflnition 1. A displacement which carries the
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system into the same final position as a succession of dis-
placements, which are equal to given displacements, is called
the sum of these given displacements.

51. Deflnition 2. The difference between a chosen dis-
placement and another is a displacement whose sum, together
with the latter one, gives the former.

52. Oorollary (to § 49). The addition and subtraction of
displacements is subject to the rules of algebralc addition and
subtraction. . >



—~

CHAPTER III

INFINITELY SMALL DISPLACEMENTS AND PATHS OF A SYSTEM
OF MATERIAL POINTS

53. Prefatory Note. From here on we shall no longer
deal with single material points by themselves, but shall
regard their investigation as being included in that of systems.
Hence what follows must be understood as referring always to
displacements of systems, even when this is not expressly stated.

Infinitely Small Displacements

54. Explanation. A displacement is said to be infinitely
small when its length is infinitely small.

The position of the infinitely small displacement is a
position to which the bounding points of the displacement lie
indefinitely near.

An infinitely small displacement is determined in mag-
nitude and direction when we know its position, and the
infinitely small changes which the coordinates of the system
undergo owing to the displacement.

55. Problem 1a. To express the length ds of an infinitely
small displacement in terms of the changes dz, of the 3n
rectangular coordinates of the system.

If in equation § 31 (i) we substitute dz, for z,’—=z,, we
obtain

mds? = ES: m,dx, 2

1
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56. Problem 1b. To express the angle s/.\s’ between two in-
finitely small displacements ds and ds’ in terms of the changes
dz, and dz,’ in the 3n rectangular coordinates of the system.

If in the equation § 44 we substitute dz, for z,’ —z, and dz,’
“for z,” —x,° we obtain

8a
mdsds’ cos s/s\' = 2" mdx,dz,.
1

This expression holds whether both displacements bave the
same position or not.

57. Problem 2a. To express the length ds of an in-
finitely small displacement in terms of the changes dp, of the
r general coordinates p, of the system.

The rectangular coordinates z, are functions of the p,’s,
and moreover of the p,’s alone, since they are completely
determined by these, and since displacements of the system
which are not expressible in terms of the changes of p, are
excluded from consideration (§ 13).

Putting now for shortness

or, .
a_p_p =a, (1)’
we get 3n equations of the form
T
dz, = Dpa,,dp, (i),
1

where a,, are functions of the position, and can therefore be
expressed as functions of p, Substituting these values in
equation § 55, and putting for shortness

3n
My, = Drm,a,a, (iii),
S

we get as the solution of the problem
dst = D' Dva,,dp,dp, @iv).
1 1

58. Problem 2b. To express the angle s/;’ between two
infinitely small displacements of lengths ds and ds’ and having
the same position in terms of the changes dp, and dp,’ in the »
general coordinates p, of the system.
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We form the values of dz,’ by means of § 57 (ii), and
substitute these and the values of d, in equation § 56.
Remembering that for both displacements the values of the
coordinates, and therefore of the quantities a,,, are equal, we
obtain

dsds cos s/;’ = zrpjca”dppdp,’ .
1 1

Properties of a,, and a,,. Introduction of 5,,.
59. 1. For all values of p, o, 7 (cf. §57 (i),

02s0 _ %8
a’f apf.

60. 2. For all values of p and o (cf § 57 (iii)),
L ap=a,,
61. 3. The number of the quantities a,, is equal to 3nr;
the number of the quantities a,, different from one another is

}rr+1).
62. 4. For all values of p
@, > 0.
For all values of p and o
Aty — 0%pe>0.
For the right-hand side of the equation § 57 (iv.), on
account of its derivation from the equation § 55, is a neces-

sarily positive quantity, whatever may be the values of dp,.
For this the foregoing inequalities are necessary conditions.

63. 5. For all values of p, o, 7, the following equation
holds,

S da,, Oa oa oa oa
v ;.'B+_.-L’ =m _E+_"'!_._EI>,
P ""‘-‘"( ops am) <ap, w, .

In order to prove this equation we must substitute on the
right-hand side the values of a,, given in § 57 (iii), and make
use of the properties of a,, given in § 59.

64. 6. Let the determinant formed by the 7% quantities
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a,, be A. The factor of a,, in A, divided by A will always
be denoted by b,,. Thus we have as a definition

b, =~ —.

P7 A oa,,
For all values of p and o then
bpo = by

The number of quantities b,, different from one another is
equal to 4r(r+ 1).

65. 7. The value of the expression

r

21’ LN

is equal to unity so long as « =y ; its value is zero if ¢ and x
are different.

r

For if ¢=y, the expression zpap‘bpr represents the

1
determinant A itself. If, however, « and y are different, it
represents the determinant which results from A when the row
a, 1is replaced by the row a,. In this determinant two

PX
rows are equal, and consequently its value is zero.

66. 8. For all values of . and x we have the two
equations

r_r

21’ 21' Bpoplloy = By
21,.2: BpBpbey =,y

For if we form by means of § 65 the value of the expression

r r

prp,a,m, or 2}(2”6’“ for all values of o from 1 to r, and then
1 1
multiply the resulting equations one by one with a,

ox OF b,x
respectively, and add, the equations follow.

67. 9. Definite changes of the quantities a, involve
definite changes of the quantities 5, Let us denote by 8a,,
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and 8b,, any variation of a,, and the resulting variation in 3,,,
then the following equatmns hold,

2 20 al"a"XSbW sa‘x
2 2« BobrOtpe = — 8b,,,

If we vary the equations § 66 and make use of the results of

§ 65 the equations follow.

68. 10. If we vary in a,, and b, only one definite coor-

dinate, p,, on which they depend then for every value of T

Oa

2 Ew R

oa T _ abw
2 E’b‘“b"x 81: 3p, )

Displacements in the Direction of the Ooordinates

69. Deflnition 1. A displacement in the direction of a
definite coordinate is an infinitely small displacement in which
only this one coordinate is changed without the remaining
ones changing.

The direction of all the displacements in the direction of
the same coordinate from the same position is the same; it
is called the direction of the coordinate in that position.

70. Note. The direction of a coordinate depends on the
choice of the remaining coordinates in use.

71. Definition 2. The reduced component of an infinitely
small displacement in the direction of a given coordinate is
the component of the displacement in the direction of the
coordinate (§§ 48, 69) divided by the ratio of the change of
the coordinate to a displacement in its own direction.

The reduced component in the direction of a coordinate
is called for shortness the component along the coordinate.

Thus we speak of the component of a given displacement

F
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in a given direction; we cannot speak of the reduced com-
ponent in a given djrection, but only of the reduced com-
ponent of an infinitely small displacement in the direction
of a coordinate.

72. Problem 1a. To express the inclination :;z:\,, of the
displacement ds to the rectangular coordinate z, in terms of
the 3n increments dz,.

In equation § 56, put the dz,’s equal to zero for all values
of v, except the given one to which the problem refers.
Then the direction of ds’ is, by § 69, that of z,, and the angle

&s’ becomes the required angle. Moreover, since by § 55 mds
=m,dz,?, we get as solution

where for ds its value in terms of dx, is to be substituted.

73. Problem 1b. To express the components dz, of the
displacement ds along the rectangular coordinates 2, in terms of
the changes d, of the coordinates.

Put Qc, =0 in the foregoing proposition; then we get
the displacement ds in the direction of the coordinate z,, and
we observe that the ratio of the change of the coordinate to
a displacement in its own direction is equal to dx,/ds, or to
»/m[m,. The left-hand side of equation § 72 represents
immediately the component of ds in the direction of z,; then if
we divide the equation by »/m/m, we obtain (§ 71) as the solu-
tion of the problem

— m
dz, =

74. Problem 1¢. To express the changes dz, of the rect-
angular coordinates in a displacement in terms of the reduced
components of the displacement along these coordinates.

The solution of the foregoing problem gives immediately

m
dz, = — dz,.
m,



I INFINITELY SMALL DISPLACEMENTS 67

75. Problem 2a. To express the inclination 39, of the
displacement ds to the general coordinate p, in terms of the r
increments dp,,.

Put in equatlon § 58 dp,’ zero for all values of p except
the chosen one to which the problem refers. The dlrecmon

of df is then by § 69 that of p,, and the angle &s’ is the
required angle. Since at the same time by § 57 ds? =a,dp'?,
we obtain as solution of the problem

_ A r
'./ a”ds cos sp, = 210 a"dp,,

where for ds its value in terms of dp, must be substituted.

76. Observation 1. If in the foregoing expression we
put all the dp,’s equal to zero with the exception of a given
one, say dp,, the direction of ds becomes the direction of this

A A
coordinate p, and the angle sp, becomes the angle pp, which
the coordinate p, makes with the coordinate p,. Since at the
same time ds®=a_,dp, 2% we obtain for this angle

A [
cosp'pp= Ja a =
ppaa

and this angle is always, by § 62, a real angle.

77. Observation 2. The coordinates p, are called ortho-
gonal when each of them is in every position perpendicular to
the remaining ones. The necessary and sufficient condition is
(§ 76) that a,, should vanish whenever p and o are different.
For example, rectangular coordinates are orthogonal coordinates.

78. Problem 2b. To express the components dﬁp of the
displacement ds along the coordinates p, in terms of the in-
crements dp, of these coordmates in the displacement.

In equation § 75 put spp equal to zero, and we get the dis-
placement ds given by this equation in the direction of p,;
every dp, is zero except dp, and the equation thus becomes

J_ ds=a,dp, The ratio of the change of p, to a displace-
ment in its own direction is thus I/J_ If we remember

" that according to § 48 ds cos sp,, is the component of ds in the
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direction p, and pay attention to definition § 71, we see that
the left-hand side of the equation § 75 represents the reduced
component along p, and we obtain the expression,

- A . .
dpp = a/ a”ds cos 8p, . (1)’
and thus o

dpp = 2«- a dev . (11)
1 .

79. Problem 2c. To express the increments dp, of the
coordinates, owing to a displacement ds, in terms of the com-
ponents dp, of the displacement along the coordinates p,.

Using the equation § 78 (ii), along with the notation of
§ 64, we get immediately

dpp = E' bpadir
1

80. Problem 3a. To express the components dﬁp of a
displacement along the general coordinates p, in terms of the

components dz, of the displacement along the rectangular
coordinates of the system.

We obtain successively by use of §§ 78, 57 (iii), 57 (ii),
and 74,

_ T r 8n
dp, = El"awdp ¢ = 2"21’ %ﬁ"vp‘.'wdp o

8n

8n
m, —
= 2 —'a,do, = ng,sz,.

81. Problem 3b. To express the components dz, of a
displacement along the rectangular coordinates z, in terms of

the components d;)p of the displacement along the general
coordinates p, of the system.
We obtain successively by means of §§ 73, 57 (ii), and 79,

m

m r T _
v
= 2 e 2 b
1 1

thus, writing for shortness

r
— m, m,
d.b. = —dx, = 714 chy’d o
1
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. N . %21' “"bﬁb = B 1 (i)’
we obtain
dz, =0 B,,dp, (ii).
1

82. Problem 4 To express the length of an infinitely
small displacement in terms of its reduced components along
the coordinates of the system.

If we employ the general coordinates p, we obtain by
successive use of §§ 78 (ii) and 79 with the equation § 57 (iv)

s’ = Z'.Pzr":apodppd. (4
1 1
= Zﬂdppdip = 21’21’ bwdz; pdz_) o

83. If we employ rectangular coordinates these equations '
take the form

= 3 s

= St dnds, =S P

84. Problem ba. To express the angle between two in-
finitely small displacements from any position in terms of
the reduced components of both displacements along the
rectangular coordinates.

By successive use of § 73 and § 74 in the equation § 56
we obtain the forms

dsds cos s/}s’ = zi:%'dw,dx,'
3n _ 8n _ o o _
= 21 dxvdxv’ = E'dwvdwv, = 2' —-dx,d'v,'.
1 1 1M

In theie we must substitute for ds and d¢ their values in
terms of dx, given in § 83.

85. Problem Bb. To express the angle between two
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infinitely small displacements from the same position in terms
of the components of the two displacements along the general
coordinates p,.

By successive use of §§ 78 and 79 in the equation § 58
we obtain the forms

dsde cos 59 = 2',2: a,,dp,dp,

-Eﬂdp =2pdp,dp, 22 b, dp,dp,"-

Here again we must substitute for ds and ds’ their values
in terms of dp, given in § 82.

86. Problem 6. To express the angle between two in-
finitely small displacements in terms of the angles which both
make with the coordinates of the system.

: Divide the last of equations § 85 by dsds’ and remember
that by § 78 (i)
dp
J- cos sp,——(zf, ,./a”coss’pp ds'
we then obtain

coss.s’ 22

87. When we employ rectangular coordinates the fore-
going equation takes the form

@, COS sp, cos s'p,, ’

/\ 3n A
Cos 3§ —2-' Cos &z, Co8 s’a;,.

It is to be noticed that the equation § 86 assumes the
same position for the two displacements, whereas the equation
of § 87 is free from this assumption.

88. Proposition. The  angles which any direction in
a definite position makes with the r general coordinates are
connected by the equation

r T A A
zpzcb”Ja”a“ cos 8p, €08 sp, =1;
1 1
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for this equation follows when in § 86 the directions of ds
and ds are made to coincide.

89. Corollary. In particular the 3n angles which any
displacement of the system makes with the rectangular
coordinates of the system satisfy the equation

Sn

2. cos? sz, - =1.

1

Use of Partial Differential Coefficients

90. Notation. The length ds of an infinitely small dis-
placement is determined by the values of the coordinates p, of
its position and their changes dp, If we change one of these
constituent elements, whilst the rest remain constant, the
resulting partial differential of ds will be denoted by 0,ds.

If we consider, as we may, the-coordinates p, and the
components dp, along them as the independent comstituent
elements of ds, then the resulting partial differential of ds will
be denoted by 0.ds.

Other partial differentials of ds are of course possible, but
it is not necessary for our purpose to specify them. The
symbol 0ds, which is usually used for them, will be retained,
and will be more particularly defined on each occasion in
words.

91. Note 1. The components of a displacement along
the coordinates can be expressed as partial differential coeffi-
cients of the length of the displacement. Thus, by differ-
entiating the equation § 57 (iv), and making use of § 78,
we get

apl]s
%a —dsddpp

92. Note 2. The inclination of an infinitely small dis-
placement to the coordinate p, can be expressed by means of
the partial differential coefficients of its length. Thus, using
§§ 91 and 78,

A Ods
J—cmp, o
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.93. Observation. In particular, if in §§ 91 and 92 we
use rectangular coordinates we obtain

ods
= d o . « e
v sad\'l‘ (l)’

v

|

A ods
COS &, = ;

14 a dx’ (ll),

3|3

where the meaning of the partial differentials is clear from
what precedes.

94. Note 3. The changes which the coordinates p,
suffer in an infinitely small displacement can be expressed
as partial differential coefficients of the length of the displace-
ment. Thus, using the equations in §§ 82 and 79,

= 2 _ 308
e adj)p 3d1~)p.

95. Note 4.  For all values of the index = the following
relation exists between the partial differential coefficients of ds—

Ods  Ods

=~ @).
~ %, %,
For
0ds 1 G ~"t0a
A= e ldp d
, PP,
. 9p, 2&21 21 op, °*
and
0,ds

1 r _r abﬁ'd' d_

op, 2d82,'2,’3p, 2P
. If we put in the first form for dp, and dp, their values in
terms of dp, and dp, given in § 79, and make use of the

relations in g 68 and the second form, the proof follows. In
a similar manner we may proceed with the second form.

96. Proposition. If the position of an infinitely small
displacement suffers two such changes, whereby the first time
the components along the coordinates, and the second time
the changes of the coordinates retain their original value, then
the changes in the length of the displacement in both cases
are equal, but of opposite signs.
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For in the second case 8dp, =0, whilst the coordinates p,
suffer the changes 8p,, and thus the change in the length of
the displacement is given by

sds= D%y (i)
. 1 a?r
In the first case 8d1—1,= 0, whilst the coordinates suffer
the same changes &p, so that

s,ds=2:‘;«p‘i*’ap, o - ().

From the equations (i) and (i) and the equation § 95 (i)
we get )

Sds = — 8s.

Paths of Systems
- Explanations

97. The aggregate of positions which a system occupies in
its passage from one position to another is called a path of the
system.

A path may also be considered as the aggregate of displace-
ments which a system undergoes in its passage from one
position to another.

98. A portion of the path which is limited by two in-
finitely near positions is called an element of the path. Such
an element is an infinitely small displacement; it has both
length and direction.

99. The direction of the path of a system in a given
position is the direction of one of the elements of the path
infinitely near that position.

The length of the path of a system between two of its
positions is the sum of the lengths of the elements of the path
between these positions.

100. Analytical Representation.—The path of a system
is represented analytically when the coordinates of its positions
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are given as functions of any one chosen variable. With every
position of the path is a value of the variable associated.
One of the coordinates themselves may serve as independent
variable. It is frequently convenient to choose as independent
variable the length of the path, measured from a given position
of the path. The differential coefficients with regard to this
chosen variable, and therefore with regard to the length of
path, will be denoted in the manner of Lagrange by accents.

101. Definition 1. The path of a system is said to Le
straight when it has the same direction in all its positions.

102. Oorollary. If a system describes a straight path,
then its individual points describe straight lines, whose lengths
measured from :their starting-point are always proportional
to one another (§ 38).

103. Definition 2. The path of a system is said to be
curved when the direction of the path changes as we pass
from one position to another. The rate of change of the
direction with regard to the length of the path is called the
curvature of the path.

The curvature of the path is therefore the limiting value of
the ratio of the angle between two neighbouring elements to
their distance.

104. Observation. The value of the curvature is therefore
defined independently of the form of the analytical representa-
tion ; hence, in particular, it is independent of the choice of the
coordinates of the system. '

105. Problem 1. To express the curvature ¢ of the path
in terms of the changes of the angles which the path makes
with the rectangular coordinates of the system.

Let de be the angle between the direction of the path at
the beginning and end of the path-element ds. Then by de-
finition (§ 103)

C=—

ds

A
Let, further, cos sz, be the cosine of the angle which
the path makes with z, at the beginning of ds; and let
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A A
cos &r,+d cos &z, be the value of the same quantity at the
end of ds. Then, by equation § 87,

A A A
cos (de) = 2" cos sz,( cos &z, + d cos sz,).
1

Further, by equation 89,
A
2" cos ¥z, =1,
1
and
™A A
2" (cos sz, +d cos &x,)* = 1.
1
If, then, we subtract twice the first equation from the
sum of the last two we obtain

4n A
2 — 2 cos (de) =de* = 2" (d cos sz,)%,
1

and on dividing by ds*®
A

8n
d cos sz, \?
= D Y.
(*5")
106. Problem 2. To express the curvature of the path
in terms of the changes of the rectangular coordinates of the

system with respect to the length of the path.
From § 72 we have (§ 100)
A

N m,
cos 82, = A/ —1,),

and
A \/,,T
/ v,
cos = —p
(cos s3) o

Hence by § 105 the solution of the problem is

3n
me? = 2' muz,".
1

107. Problem 8. To express the curvature of the path
in terms of the changes in the rectangular coordinates, them-
selves considered as functions of any variable 7.

According to the rules of the differential calculus
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apl(l g (I L e 24
» “ds\dr ds) \ds) ldr dn dr d” )’

If we substitute this expression in ¢* and remember (§ 55)

OB R

ds d’ s d'c diz, .
= 2’ " drar @),

m<f%i>'c’=2?mue>- (&)

where for ds/dr and d’/dr* their values determined by the
foregoing equations are to be substituted.

108. Problem 4 To express the curvature of the path
in terms of the changes in the gemeral coordinates p, of the
system with rega.rd to the length of the path.

Substitute in the expressmn § 106 instead of the rect-
angular coordinates, p,, supposing x,” expressed in terms of ?)
and p,".

Thus, by § 57 (ii),

that

and

we obtain

’ ’
T, = 2p2,D0p
1
and hénce
.
/4 n 1N .
2, = Dp(a,p," + 2,8,
1
therefore

r r
&, = 21»2' (@ @a8, 2, + 20,,/0,0,0," + ,,'8,,/D,D.)).
1
If we form these equations for all values of v and multiply

each of them by % and then add, the left-hand side becomes ¢ 2.

The summation on the right with regard to » can be obtained
by aid of the quantities a,, for the first two terms. For the
first term we get 1mmed1ately by § 57 (iii) a,. For the
coefficient of p,” in the second term we have
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r . 8n
22:10,'21,' Za,.a, "2 z'p,p, 5'_, 2a ;; :
0,
= 2 zfppp‘r 2' _avv<%+ a;:)
=SS!+ =) ey § 69

op,
8 0
_2 zfp’pf< gp’ 5‘:—’?).

In the transition from the second to the third form, and
from the fourth to the fifth, use is made of the fact that, when
F(p,0) is any expression involving p and o, then

ZPZvF (po) = zlpzlcF(a',p).

The coefficient of the third term cannot be expressed in
terms of a,. In order to make the connection with the rect-
angular coordinates disappear from the final result, let us put

v 08
_»vp
m—z m apk 3p“
Then we obtain
AN " 3 /.0
#= 33 omrin+ St i

r r
+ ZAE“ apw\up p,p ¢’p4\’pu’ } .

In these results the values of @, are given by means of
§ 57 as functions of p,; the quantxtles ora 8T€ t0 be regarded
as newly introduced functions of the same quantities. The
number of these newly introduced functions is equal to

P+ 1)



CHAPTER 1V

POSSIBLE AND IMPOSSIBLE DISPLACEMENTS. -
MATERIAL SYSTEMS

Explanations

109. There exists a connection between a series of material
points when from a knowledge of some of the components
of the displacements of those points we are able to state some-
thing as to the remaining components.

110. When connections exist between the points of a
system, some of the conceivable displacements of the system
are excluded from consideration, namely, those displacements of
the system whose occurrence would contradict the statements
above referred to. Conversely, every statement that some of
the conceivable displacements of the system are excluded from
consideration, implies a connection between the points of the
system. The connections between the points of a system are
completely given when for every conceivable displacement of
the system it is known whether it is, or is not, excluded
from our consideration.

111. Those displacements which are not excluded from
our consideration are called possible ones, the others impossible
ones. Possible displacements are also called virtual. They
are always called possible displacements when as a narrower
idea they are contrasted with conceivable displacements; they
are only called virtual when as a broader idea they are con-
trasted with a narrower one, eg. the case of actual displace-

ments.
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112. Possible paths are those paths which are composed of
possible displacements. Possible positions are all those positions
which can be reached via possible paths.

113. Thus all positions of possible paths are possible posi-
tions. But it is not to be understood that any conceivable
path whatever through possible positions is also a possible path.
On the contrary, a displacement between infinitely neighbour-
ing possible positions may be an impossible digplacement.

114. Between two possible positions there is always one
possible path. For if from any one actual position even a
single possible path can be drawn to each of the two positions,
then these two paths must together form one possible path
between the two positions ; if no possible path could be drawn
to one of the two, then would this position not be a possible
position.

115. Definition 1. A connection of a system is said to
be a continuous one when it is not inconsistent with the three
following assumptions :—

1. That the knowledge of all possible finite displacements
should be included in the knowledge of all possible infinitely
small displacements.

2. That every possible infinitely small displacement can
be traversed in a straight, continuous path.

3. That every infinitely small displacement, which is
possible from a given position, is also possible from any in-
finitely neighbouring position, except for variations of the
order of the distance between the positions or of a higher
order.

116. Corollary. When only continuous connections exist
in a system, the sum of any possible infinitely small displace-
ments whatever from the same position is itself a possible dis-
placement from the same position. (Superposition of infinitely
small displacements.)

For, according to § 115 (3), the individual displacements
may be performed successively, and consequently, by § 115
(2), the direct displacement from the initial position to the
final one is itself a possible displacement.

117. Definition 2. A connection of a system is said to



80 FIRST BOOK CHAP.

be an internal one when it only affects the mutual position
of the points of the system.

118. Corollary. When in a system only internal con-
nections exist, every displacement of the system which -does
not alter the configuration is a possible displacement, and
conversely.

119. Definition 8. A connection of a system is said to
be normal (gesetzmdissiger) when it exists 1ndependently of the
time.

A normel connection is therefore implied in the statement
that of the conceivable displacements of a system some are
possible, others not, and this at all times or independently of
the time.

120. Observation, So long as we treat solely of the
geometry of systems, the difference between normal and
abnormal connections does not appear, for in this case our in-
vestigations are not affected by the time. If the connections
of a system are different at two different times, then for the
present we must consider that we are dealing with two
different systems. It will practically amount to the same
thing if we assume that in this first book all the connections
are normal.

121. Definition 1. A system of material points which
is subject to no other than continuous connections is called a
material system.

122. Definition 2. A material system which is subject
to no other than internal and normal connections is called a
free system. :

123. Definition 3. A material system between whose
possible positions all conceivable continuous motions are also
possible motions is called a holonomous system.

The term means that such a system obeys integral (d\os)
laws (vouos), whereas material systems in general obey only
differential conditions. (Cf. § 132 infra.)

Analytical Representation

124. Note. A system of material points satisfies the
conditions of a material system when the differentials of its
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rectangular coordinates are subject to no other conditions than
a series of homogeneous linear equations whose coefficients are
continuous functions of possible values of the coordinates.

For the first kind of continuity which Definition 115
requires must be presupposed, when mention is made of the
differentials of the coordinates of the system; the other two
kinds of continuity are satisfied by the restriction of the differ-
entials employed.

125. Converse. If a system of material points satisfies
the conditions of a material system, then the differentials of its
rectangular coordinates are subject to no other limitations than
to a series of homogeneous linear equations, whose coefficients
are continuous functions of possible values of the coordinates.

To prove this let us take a possible position of the system,
and the possible displacements from it. For a given displace-
ment the 3» increments dx, may be supposed to have to one
another the ratios

€

. €

n - €e - .. €

13n°

If now we consider du, as any infinitely small quantity
whatever, then by means of the set of equations

dz, = e, du,

a set of possible displacements is given. Now either all pos-
sible displacements are contained in these, or this is not the
case. If not, then we must take a second displacement, which
cannot be represented in this form, and for this the 3« incre-
ments dz, may bear to one another the ratios

€,

21.6 « o o€

22 29m"
Then taking any second infinitely small quantity du,, by means
of the set of equations

dz, = ¢, du, + ¢, du,,

by §116 a more general set of possible displacements is
given.

Now either all possible displacements are contained in this
set, or not. If not, we must choose another such quantity
dug, and continue the process until, on account of the exhaus-
tion of all possible displacements, it is not possible to continue

G
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it further. Its continuance becomes impossible when we have
taken 3n such quantities du, ; and then the expression

3n

dz, = Dx e, du, @)

1

represents all possible displacements of the system, when all
conceivable displacements are possible ones, and thus when
no connections exist between the points of a system. In
general the process must come to an end earlier, and all possible
displacements may therefore be expressed by equations of con-

dition of the form
l

dx,=2ke,\,, Uy, (lL)
1
where under all circumstances

12 3n.

In order that this form may be satisfied by arbitrarily
chosen values of dz,, it is sufficient that the dz,’s should satisfy
the 3n—1{ linear homogeneous equations which result from
the elimination of du, from the equations (i). The quantities
¢), must, according to § 115 (3), be continuous functions of the
position. However (by § 124), the increments dz, are not
to be subject to further limitations than these.

126. Observation. The number and the content of the
equations which we obtain between dz, by the foregoing process,
are independent of the particular choice of the displacements.

For if we take other displacements and express dz,
in terms of other quantities dv,, then we can substitute the
values of dz, in the equations which we have already obtained
by elimination. If these are not identically satisfied then
the quantities dv, would not be independent, which would be
contrary to the assumption under which they are chosen. Thus
these equations are identically satisfied, and cannot therefore
be different from the equations or linear combinations of the
equations which were obtained by elimination of the quantities
dv, in terms of which the increments dx, are expressed. The
number of equations obtained by means of du, can not be
greater than the number obtained by means of di,: neither
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can it be less; for then the converse process would show that
the quantities du, would not be independent of one another.

127. Corollary 1. The connection of a material system
can be completely expressed analytically by stating a single
possible position of the system and a set of homogeneous linear
equations between the differentials of its rectangular coordinates.

For relations between these differentials cannot by § 125
be given in any other manner than by such a set of equations.
This does not exclude the existence of finite equations between
the coordinates. However, all such finite equations can be
completely replaced by means of a single possible position,
and just as many homogeneous linear equations between the
differentials. These last, however, must not be inconsistent
with the given differential equations; they must either reduce
to them, or must be associated with them in a complete repre-
sentation.

128. Notation. The equations which represent the con-
nection of a material system, in terms of its rectangular coor-
dinates, will in future always be expressed in the following form

Sn

zv x‘,dx, =0.
1
It is to be understood that ¢ such equations exist, and that
the ¢'s have values from 1 to 7. The quantities z,, are to be
considered continuous functions of z,. :

129. Corollary 2. The connection of a material system
whose positions are expressed in terms of general coordinates
can also be completely expressed analytically by stating a
single possible position and a set of homogeneous linear
equations between the differentials of the coordinates.

Using the general coordinates p, whose number 7 is less
than 37, a connection between the points of the system is
ipso facto in existence. First suppose the connection to be
completely expressed by the rectangular coordinates according
to § 128. In the corresponding differential equations let the
values of dz, be substituted in terms of dp, by means of
equation § 57 (ii). The resulting linear homogeneous equations
can be so arranged that 3n — r of them are identically satisfied
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in consequence bf the 3n — r equations which express the fact
that the 3n quantities z, are functions of the » quantities p,
The remaining k& = ¢ — 3n 4 r equations between dp, give com-
pletely all the equations between dz,, and therefore (§ 127),
with a knowledge of one possible position, are sufficient to
describe completely the connection of the system.

130. Notation. The equations which express the connec-
tion of a material system in the general coordinates p,, will in
future always be written in the form

2# Py, = 0.
1
They will be taken as % in number, and all values from 1 to
k areto be given to y. The quantities p,, are to be considered
continuous functions of p,

131. Observation. The equations § 128 or § 130 are
called the differential equations, or the equations of condition
of the system.

132. Propogition. When from the differential equations
of a material system an equal number of finite equations
between the coordinates of the system can be deduced, the
system is a holonomous system (§ 123).

For the coordinates of every possible position must satisfy
the finite equations. The differences between the coordinates
of two neighbouring positions satisfy consequently an equal
number of homogeneous linear differential equations, and since
these must not be inconsistent with the equal number of the
differential equations of the system, they must satisfy these
also. The displacement between any two possible positions is
consequently a possible displacement, whence the assertion
follows.

133. Converse. If a material system is holonomous, then
its differential equations admit an equal number of finite or
integral equations between the coordinates.

For let us take from the r coordinates of the system, be-
tween whose differentials the % equations exist, any, say
the first » —% as independent variables, and pass from any
initial position of the system along different possible paths
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to a position for which the independent coordinates have given
values. Now if with a continually changing path one arrived
at continuously changing values of the remaining coordinates,
consequently at different positions, these positions would be
possible positions, and therefore the displacements between
them would by hypothesis be possible displacements. There
would then be a value-system of the differentials, different
from zero, which would satisfy the differential equations, even
when the first » — & are put zero. This is not possible, for the
equations are homogeneous and linear. Thus we must always
arrive at the same values not only of the first »—%, but also
of the remaining coordinates. The latter are consequently
definite functions of the former. The % finite equations which
express this are, since they cannot be inconsistent with the
differential equations, integral equations of these latter.

Freedom of Motion

134. Definition. The number of infinitely small changes
of the coordinates of a system that can be taken arbitrarily is
called the number of free motions of the system, or the degree
of freedom of its motion.

135. Note 1. The number of free motions of a system is
equal to the number of its coordinates, diminished by the
number of the differential equations of the system.

136. Note 2. The number of free motions of a material
system is independent of the choice of the coordinates.

In the notation of §§ 128-130 the number of degrees of
freedom is equal to r—#%, or, by § 129, to 3n—73, and is
therefore always the same number, whatever numbers » and
k may represent.

137. Note 8. The number of degrees of freedom of a
system does not change with the position of the system.

For the connection being a continuous one, the number of
degrees of freedom cannot differ by a finite quantity in neigh-
bouring positions; thus, since a continuous change in this
number is excluded, it does not change in finitely distant
positions.
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138. Note 4 The proof of the set of equations in § 125
furnishes a solution of the problem—To find, but not without
trial, the number of degrees of freedom of a completely known
material system. The number [ of the auxiliary quantities du,
found according to the method of that proof is the required
number.

It is known that the possible positions of the system can be
represented by means of r general coordinates p, and so in
that proof these coordinates can be used instead of z,.

139. Deflnition. A coordinate of a material system whose
changes can take place independently of the changes of the
remainder of the coordinates is called a free coordinate of the
system.

140. Corollary. A free coordinate does not appear in the
differential equations of its system, and conversely every coor-
dinate which does not appear in the differential equations of
the system is a free coordinate.

141. Observation 1. Whether a given coordinate is a
free coordinate or not depends on the choice of the remaining
coordinates simultaneously employed.

For if a certain coordinate does not appear in the differen-
tial equations of the system, and we choose instead of one of
those coordinates which do appear in the differential equations,
a function of this and the first one as coordinate, then the first
one loses its property of being a free coordinate, a property
which it possessed until then.

142. Observation 2. In a free system every coordinate
of absolute position is a free coordinate. See §§ 118 and 122.

143. Proposition. = When the possible positions of a
material system can be represented by means of coordinates
which are all free, then the system is holonomous (§ 123).

For every displacement of the system between possible
positions is expressed in terms of a value-system of the
differentials of the free coordinates; every such value-system
is possible since it is subject to no conditions, and therefore
every displacement between possible positions is a possible
displacement.
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144. Converse. In a holonomous system all possible
positions can be expressed in terms of free coordinates.

If a holonomous system has » coordinates, between which
k differential equations exist, then % of the coordinates can be
expressed as functions of the remaining (r—%). (See § 133.)
Hence these r—/% arbitrarily chosen coordinates determine
completely the position of the system, and can by omission
of the remaining coordinates be taken as free coordinates
of the system. Also any (r—k) functions of the original r
coordinates may serve a similar purpose.

145. Observation 1. The number of free coordinates of a

holonomous system is equal to the number of its degrees of
freedom.

. 146. Observation 2. If the number of coordinates of a

material system is equal to the number of its degrees of
freedom, then all the coordinates are free coordinates, and the
system is holonomous.

For should even a single differential equation between
the coordinates exist, then the number of coordinates of the
system would be greater than the number of degrees of free-
dom. The number of coordinates can not be less than the
number of degrees of freedom.

147. Observation 3. The possible positions of a system,
which is not holonomous, can not be fully represented by means
of free coordinates alone.

For the opposite of this statement would be contrary to
§143.

Displacements Perpendicular to Possible Displacements

148. Proposition. If the r components dip of a dis-
placement ds of a system along the coordinates p, can be
expressed by means of £ quantities «, in the form

k
dp P = 21’“}7 xp'Yx’

where the p, ’s are taken from the equations of condition of the
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system (§ 130), then the displacement is perpendicular to every
possible displacement of the system from the same position.
Let ds' be the length of any possible displacement from
the same position, and let dp,” denote the changes of the coor-
dinates owing to this displacement. If now we multiply the
quatlons of the series, each with dp, and add them, then
using equations § 85 and § 130

_ A K 4
2’ dp,dp, = dsds’ cos ss' = 2,‘ 7x2p Py =03
1 1 1

A A
thus cos s8'=0; and s’ = 90° as was to be proved.

149. Additional Note. The » components dp, of a dis-
placement ds along the coordinates p, are singly determined
when we know % of them, and know also that the displace-
ment is perpendicular to every possible displacemeut of the
system.

Let dp,’ be again the changes of p, for any possible dis-
placement. By means of the k equations of condition we
can represent % of them as homogeneous linear functions of
the remaining (» — k), and then substitute these values in the
equation

Ep dp dpp =

The dp,”s appearing in this equation are now completely
arbitrary, and thus the coefficient of each one of them must
vanish. This gives (»—%) homogeneous linear equations be-

tween dﬁp which permit us to express (r—£%) of them as
single-valued linear functions of the remaining .

150. Converse. If a conceivable displacement is per-
pendicular to every possible displacement of a system, then its
7 components d;)p along p, can always, by suitable choice of the
k quantities v,, be expressed in the form

k .
. dpﬂ = zx pxpyx‘
1

For if we determine the v,’s by means of % of these equa-
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tions and calculate by means of these values all the com-
ponents, we must obtain the given values of dp:. For the
displacement so obtained is by § 148 perpendicular to all
possible displacements, and has with the given displacement
k components common. It has thus by § 149 all the r com-
ponents along p, common with the same.



CHAPTER V
SPECIAL PATHS OF MATERIAL SYSTEMS

1. Straightest Paths

151. Deflnition 1. An element of a path of a material
system is said to be straighter than any other when it has a
smaller curvature.

152. Deflnition 2. The straightest element is defined as
a possible element, which is straighter than all other possible
ones which have the same position and direction.

153. Deflnition 3. A path, all of whose elements are
straightest elements, is called a straightest path.

154. Analytical Representation. All elements of a
path of which one straightest element is the straightest, have
the same position and direction; hence the values of their
coordinates, and the first differentials of these coordinates with
regard to the independent variables, are equal. The curvature,
however, is determined not by means of these values alone,
but also by means of the second differential coefficients of the
coordinates. By the values of these the elements are dis-
tinguished, and for the straightest element the second differen-
tial coefficients must be such functions of the coordinates and
of their first differential coefficients as make the curvature a
minimum,

The equations which express this condition must be satis-
fied for all positions of a straightest path, and they are thus
the differential equations of such a path.
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155. Problem 1. To express the differential equations of
the straightest paths of a material system in terms of the rect-
angular coordinates of the system.

Let us choose as independent variable the length of the
path. Since only possible paths are to be considered, the 3n
quantities ," according to §§ 128 and 100 are subject to ¢

equations of the form
8n

zu zx =0 ().

1
Thus the 3z quantities z,” are subject to ¢ equations of

the form o ey /Z ‘, B
2' z, I’Q:V” + EVZFB;:—"&?V x“ =0 (l.l),
1 1 1 [
which follow from (i) by differentiation.
With the condition that these equations are not to be
violated, the quantities z,” will be determined so as to make
the curvature ¢ (§ 106), or what is the same thing, the value

of ¥ ¢ viz,
": m, ng
'}21 7na:,, (iii),
a minimum.

According to the rules of the differential calculus, we
proceed as follows :—

Multiply each of the equations (ii) by a factor to be
determined later, which for the «* equation we may denote
by E,; add the partial differential coefficients on the left-
hand side of the resulting equations arranged according to
each of the quantities z,” to the partial differential coefficients
of (iii) (the quantity which is to be made a minimum) arranged
according to the same quantities; then finally put the result
equal to zero, and we get 3n equations of the form

L3
m, — .
o)+ Dt =0 iv);
1

which, together with the ¢ equations (ii), give 3n+ 4 linear
but not homogeneous equations to determine the 3n 41
quantities z,” and B, ; and from these the values of these
quantities can be found, and consequently the value of the
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‘least curvature. The satisfying of the equations (iv) at all
positions of a possible path is thus a necessary condition that
the path should be a straightest one, and the equations (iv) are
therefore the required differential equations.

156. Observation 1. The equations (iv) are moreover the
sufficient conditions for the occurrence of a minimum. For

the second differential coefficients vanish whenever »

axvllax n
and p are different, and are necessarily ’i)ositive when » and
p are equal. The value of the curvature thus admits no other
special value.

The satisfying of equations (iv) for all positions of & pos-
sible path is thus the sufficient condition for a straightest
path.

157. Observation 2. By use of § 72 the equations (iv)
can be written in the form

m, d A :
CcoS 8z, | = — ‘J/'E-
m ds 2 W

1

The equations (iv) therefore determine how the direction of a
path must change from position to position in order that it may
remain a straightest path; and moreover every single equation
determines how the inclination of the path to a given
rectangular coordinate changes.

158. Problem 2. To express the differential equations of
the straightest paths of a material system in terms of the general
coordinates of the system.

Choose again as independent variable the length of the
path. The coordinates p, and their differential coefficients p,’
satisfy (§ 130) the % equations

zppxppp, =0 (i)’
1
thus the quantiti.es p," satisfy the equations
J " J 'apxp 'p =0 i
Sopr eSS Pemri=0 @
1 1 1 L4

From all values of p,” which satisfy these equations those
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are to be determined which make the value of ¢ or 3% that-
is, the right-hand side of the equation § 108 (iii), a minimum.

We proceed according to the rules of the differential calculus,

as in § 155, and take II, for the factor, with which we

multiply the ™ of equations (ii), and we obtain the necessary

conditions for the minimum as 7 equations of the form

T T T /0a oa eee
Sronr+ 3 3G 1y ol + oot @
1 11 T L4 1

where to p in each equation a definite value from 1 to r
has to be given. These make together with the equations
(ii) (r+%) linear but not homogeneous equations for the
(r+k) quantities p,” and I, by which these quantities, and
thus the least curvature, can be found by § 108. The satisfy-
ing of equations (iii) for all positions of a possible path is the
necessary condition that the path should be a straightest path.

159. Observation 1. The satisfying of equations (iii) is
also the sufficient condition for a minimum, and thus for a
straightest path. For the result of § 108 is only a trans-
formation of § 106 for the curvature, and like § 156 this
value in § 158 only admits one special value, which is a
minimum.

160. Observation 2. By § 75 we have

S A r
— !
Ja” Co8 8p, = Eaap, v
. 1
and therefore

d A r ) r r oa o
% ( N a,, cos spp> = 21‘ a,.p, + 21"2]'@5 Papf .

Thus the equations 158 (iii) can be written in the form
L]
r k

d{ — A ' <30a,,
ds ap cos sp, | = %Z’ZTBPP PePr — zlxpxpnx'

The equations (158) (iii) determine thus how the direction of
the path must change from position to position in order that
it may remain a straightest path; and moreover every single
equation determines how the inclination to a given coordinate
p, changes.
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161. Proposition. From a given position in a given
direction there is always one and only one straightest path
possible.

For when a position and & direction in it are given, the
equations 155 (iv) and 158 (iv) always give definite, and
moreover unique, values for the change of direction ; thus by
means of the given quantities the initial position, the direction
at the next element of the path, and therefore at the successive
positions right to the final position, are singly determined.

162. Corollary. It is in general not possible to draw a
straightest path from any position of a given system to any
other position.

For since the manifold of possible displacements from a
position is equal to the number of free motions of the system,
the manifold of possible directions in any position and there-
fore the manifold of straightest paths from it is smaller by
unity. The manifold of pesitions which are to be reached by
straightest paths from a given pesition is thus again equal to
the number of free motions. But the manifold of possible
positions may be equal to the number of coordinates used, and
is therefore in general greater than the former.

163. Note 1. In order to be able to express all straightest
paths of a material system whose positions are denoted in
terms of p,, by equations between p, it is not necessary to know
any 3n functions whatever which fully determine the position
of the separate points of the system as functions of p, It is
sufficient that, together with the equations of condition of the
system in terms of p, the 7 (r+1) functions a, of p,
should be known.

For the differential equations of the straightest paths can
be explicitly written down when together with the p,,’s the
a,, s are given as functions of p,.

164. Note 2. In order to be able to express the straightest
paths of a material system whose positions are denoted in terms
of p, by equations between p,, it is sufficient to know, together
with the equations of condition between p,, the length of
every possible infinitely small displacement as a function of
these coordinates p, and their changes.
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For if ds is the -expression for this length in the desired

form, then
0%ds?
o = Sdp,odp,

165. Note 3. In order to know the value of the curvature
itself in any position of a straightest path, it is not sufficient to
know the 3r(r 4- 1) functions a,. We require in addition. the
}7%r + 1)* functions a,,,, (§ 108).

The knowledge of the position of all the separate points as

functions of p, is not necessary for the determination of the
curvature itself.

2. Shortest and Geodesic Paths

166. Definition 1. The shortest path of a material system
between two of its positions is a possible path between these
positions, whose length is less than the length of any of the
other infinitely neighbouring paths between the same positions.

167. Note 1. The definition does not exclude the possi-
bility, which may actually arise, of there being more than one
shortest path between the two positions. The shortest of
these shortest paths is the absolutely shortest path. It is at
the same time the shortest path which is at all possible
between the two positions.

168. Note 2. Between any two possible positions of a
material system there is always at least one shortest path
possible.

For possible paths always exist between the two positions
(§ 114), and consequently there is amongst them an absolutely
shortest path which is shorter than the neighbouring ones,—
such as, according to §§ 121, 115, it must possess,—and is
consequently a shortest path.

169. Note 3. A shortest path between two positions is
at the same time a shortest path between any two of its inter-

mediate positions. Every portion of a shortest path is itself
a shortest path.

170. Note 4. The length of a shortest path differs only
by an infinitely small quantity of a higher order from the
lengths of all neighbouring paths between the same end posi-
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tions. By infinitely small quantities of the first order are
meant the lengths of the displacements necessary to pass from
a neighbouring path to the shortest path.

171. Definition 2. A geodesic path of a material system
is any path whose length between any two of its positions differs
only by an infinitely small quantity of a higher order from
the lengths of any of the infinitely neighbouring paths what-
ever between the same positions.

172. Note 1. Every shortest path between any two
positions is a geodesic path.

Thus the definition § 171 does not involve anything in the
nature of an inconsistency, for there are paths which satisfy this
definition.

173. Note 2. There is always at least one geodesic path
possible between any two possible positions of a material system

(§§ 168, 172).

174. Note 3. A geodesic path is not necessarily at the
same time a shortest path between any two of its positions.

It cannot be concluded from the definition that every
veodesic path is also a shortest path, and simple examples show
that there are in fact geodesic paths which are not also shortest
paths between their end positions. Such examples may be
taken from the geometry of the single material point, that is,
from ordinary geometry, and thus be assumed known.

175. Note 4 When between two positions there is only
one geodesic path, then this is also a shortest path, and more-
over the absolutely shortest path between the two positions.

For the opposite would by §§ 168 and 172 be contrary to
the hypothesis.

176. Note 6. A geodesic path is always a shortest path
between any two sufficiently neighbouring but still finitely
distant positions on it.

There may be between any two positions of the geodesic
path under consideration a number of other geodesic paths.
The absolutely shortest path between the two positions
must coincide with one of these paths (§ 172). If we
now make the positions approach one another along the
geodesic path considered, then the length of this path as well
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as the length of the absolutely shortest path tends to zero,
whilst the remaining geodesic paths remain finite. At least,
from a certain ﬁmte dxstance of the positions onwards the
geodesic path, along which the two positions approach each
other, must coincide with the absolutely shortest path.

177. Analytical Representation.—In order that a path
may be a geodesic path, it is necessary and sufficient that the
integral of the path-elements, (§ 99) viz.,

Jis,

taken between any two positions of the path should not vary
when any continuous variations are given to the coordinates of
the positions of the path, it being only supposed (1) that these
variations should vanish at the hmlts of the integral, and (2)
that after the variation the coordinates and their differentials
should satisfy the equations of condition of the system.
The necessary and sufficient conditions for this are a set
of differential equations, which the coordinates of the path,
considered as functions of any single variable, must satisfy,
and which are consequently the differential equations of the
geodesic paths.

178. That these differential equations should be satisfied
for all points of a possible path is also by § 172 the neces-
sary condition that the path should be a shortest path, and
hence these equations are also the differential equations of the
shortest paths. The vanishing of the variation of the integral
is, however, not also & sufﬁcmnb condition that the path should
be a shortest path between its bounding positions. It is further
necessary that for every admissible variation of the coordinates
the second variation of the integral should have an essentially
positive value. For sufficiently near positions of a path, which
satisfies the differential equations, this condition is always
satisfied by § 176 of itself.

179. Problem 1. To express the differential equations of
the geodesic paths of a material system in terms of its rect-
angular coordinates.

The 3n rectangular coordinates xz, which are mnarded as
functions of any variable, must both before and after the
variation satisfy (§ 128) the < equations

H
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Sn

2’ z dz,=0 @@).

1

The 3n variations 8z, are therefore associated with the ¢ equa-
tions which result from these after variation, viz.,

Z:x‘,d&r, + Ea:j:g:wsmm, =0 (i)
1 "%

1 1

As the length ds of an element of the path does not depend
on z,, but only on dz,, then its variation is

3"0ds \"0ds
&ds = El"aizx ;de, = 21' a%vd&v, (iii).

This being understood,
3fds = [ 8ds

must be made zero. According to the rules of the Calculus of
Variations, we multiply each of the equations (ii) by a function
of z, to be determined later, which for the «th equation will
be denoted by £, and add the sum of the left-hand sides of
the resulting equations, which sum is equal to zero, to the
varied element of the integral. By partial integration we
get rid of the differentials of the variations; finally we put
the coefficients of each one of the arbitrary functions &z,
equal to zero. We thus obtain 3z differential equations of
the form

i o 2‘ a 2{2%3%‘ %y \edz =0 (i
&Tx 3 + l‘ww Ea 1" 1"" <a‘vy ax“ Ec (T (lV),

which, together with the < equations (i), give (37 + %) equations
for the (3n 4 7) functions z, and §. These differential equa-
tions are necessary conditions for the vanishing of the variation
of the integral; every geodesic path thus satisfies them, and
consequently they represent the required solution.

180. Observation 1. The differential equations 179 (iv)
are moreover the sufficient conditions that the path which
satisfies them should be a geodesic path. For if these equations
are satisfied, then the variation of the integral /ds becomes
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equal to the series which results from partial integration under
the integral sign ; it thus becomes with the usual notation, the
upper limit being denoted by 1 and the lower by 0,

8 fils = 2 [(ads + 2% > ]

If we make the variations &z, for any two positions of the
path vanish, then the variation of the integral between these
positions as limiting positions vanishes, and therefore the re-
quired sufficient analytical condition for a geodesic path is by
§ 177 satisfied.

181. Observation 2. Let us take the current length of
the path as independent variable, then by use of §§ 55, 100,
the equations 179 (iv), after division by ds, take the form

met 4 Sl S (e - Jear=0 0

which, together with the ¢ equations resulting from differenti-
ating 179 (i), viz,

8n Bn

zvm" +22 o)z, =0 (i),

furnish (3n + 'L) unhomogeneous, hneat equations for the (3 4 7)
quantities z,” and £/, and thus permit these quantities to be
expressed as single-valued functions of the quantities =,

xv,’ E&‘

182. Observation 3. By use of § 72 the equations 181
(i) can be put in the form

"-;’ d A i , i Sn ’8.1:‘ axw
/J ;; d—8 (008 3.'13,) == Zl‘xwfz + 21‘2:(8.15 - a£;>Etxn’

The equations 181 (i) thus express how the direction of
the path must continually change from a given initial value
in order that it may remain a geodesic path; and moreover
every single equation expresses how the inclination to a given
rectangular coordinate changes.

183. Problem 2. To express the differential equations of : :
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the geodesic paths of a material system in terms of the general
coordinates p,.

The coordma.tes p, of the system are connected by the &
equations

2’ P, =0 @),
]
and thus the » variations by the equations
Sepdop, + Epzogzwsp,dp, =0 (ii).
1 1 1 T

Now the length ds of an infinitely small displacement
depends not only on the differentials dp,, but also on the
values of p, themselves, and thus

Y Ods
ds = Zal p,+ 2ty
This understood,

8/ds = f8ds must be made zero (iii).

Then we proceed according to the rules of the Calculus of
Variations as in § 179, and denoting the factor of the xth -
equation by o, we obtain the r differential equations

o) B S gt S (B B} =0

o,/ 9p, o,
which, together w1th the equations (i), give (r + %) differential
equations for the (r+ %) quantities p, and r, as fuuctions of
the independent variables. These equations are the necessary
conditions for the vanishing of the variation, and thus are satis-
fied in all positions of a geodesic path; they accordingly
contain the solution of the problem.

184. Observation 1. The differential equations 183 -
(iv) are moreover the sufficient conditions that the path which
satisfies them should be a geodesic path. For if these equations
are satisfied, then the variation of the length of the path becomes

(/. § 180)
e 3%+ o

If we make the variations Spp of any two positions of the
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path vanish, then the variation of the integral between these
positions as limits also vanishes, and therefore the required
analytical condition for a geodesic path is satisfied (§ 177).

185. Observation 2. If we choose .the length of the
path as independent variable and divide the equations 183
(iv) by ds, and for ds substitute its value given by § 57 (iv) in
terms of p, and dp, we obtain the equations of the geodesic
paths in the form of the 7 equations

- Zva,«p, +2 2( )p,p, +2xpx,vr
-SiS <‘“’1w Pelrp/=0 @

which, together with the % equations obtamed from § 183 (i),

T r T a .
ZP DPox pp" + szlvagﬂpp' pv’ =0 (it),

give (r+k) unhomogeneous, linear equations for the (r+ %)
quantities p," and 7/, and enable us to express these quantities
as single-valued functlons of p,, p,, and Ty

186. Observation 3. When by use of the length of the
path as independent variable we consider the equation § 92,
we obtain the equations 185 (i) in the form

d — A J VOa,, , , ¥ ,
(TS( @, cos spp> = ‘5‘2{"2’ P = Elxl’xp'"'x
+2 2 <__’<z_- ) >
p

Thus these equations again express how the direction of the
‘path must change in order that the path may constantly
remain geodesic; and moreover every single equation expresses
how the inclination to a chosen coordinate p, changes.

187. Note 1. A geodesic path is not completely known if
we know the length and direction of one of its elements, but
from a given position in a given direction there is in general an
infinite series of geodesic paths possible.

When the quantities p,, p,” and the % quantities r, are
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given us for one position of the path, then they are (§ 185) also
singly determined for the next element, and the continuation
of the path is only possible in a single given manner. The
knowledge of the direction of the path at that given position,
however, only furnishes us with the quantities p, and p,/, and
this is not sufficient for the determination of the path, but
admits, when particular conditions do not prevent, an infinity
of the kth order of geodesic paths.

188. Note 2. When the differential equations of the system
permit of no integral, consequently in the general case, 2 — % of
the 27 quantities p, and p, which determine a position and the
direction at it, can be arbitrarily chosen, viz., the » quantities p,
and r—k of the quantities p,/. These 2r — % arbitrary values,
together with the % arbitrary values of r, in that position, may
be regarded as the 27 arbitrary constants which, together with the
differential equations § 185 (i), determine a geodesic path, and
must therefore exist in the integrals of these equations, for by
§ 173 it must be possible to connect every possible position of
the system with every other by means of a geodesic path. For
if the differential equations of the system furnish no finite rela-
tion between p, then every conceivable value-system of these
quantities is & possible value-system ; an arbitrary initial and
final position are thus determined by means of these 27 arbitrary
values of the coordinates.

189. Note 3. For every integral, which the differential
equations of the material system admit, the number of the con-
stants which determine uniquely a geodesic path diminishes
by two.

For if from the equations of condition of the system [ finite
equations between p, can be derived, then only 7—1{ of the
r coordinates p, can be arbitrarily chosen, and consequently of
the 2r quantities p, and p,” which determine a position and a
direction at it only 2 —! —%. Further in this case the differ-
ential equations by multiplication by proper factors and by
addition can be brought into such a form that ! of them
immediately give integrable equations, viz., those equations
which are got by differentiation of the ! finite relations. In
each of these equations, one of which we may typify by the
index A, we get

-
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P Uhe o,
%, Op,

Thus the corresponding quantities r, vanish from the
equations 185 (i), and all the quantities p," and o, are singly
determined in terms of the % —/ values of the remaining ar,.
On the whole, therefore, we have still 2 — 2/ arbitrary quanti-
ties; two have disappeared for every finite equation.

Finally, these 27— 2! arbitrary constants are always suffi-
cient to connect every possible position of the system with
every other by means of a geodesic path. If then [ finite
equations exist between p,, it is sufficient to traverse the path
in such a manner that two of its positions should each have
r—1 coordinates common with the given positions; the coin-
cidence of the remaining will then ensue of itself.

3. Relations between Straightest and Geodesic Paths

190. Proposition. In a holonomous system every geo-
desic path is a straightest path, and conversely.

To prove this let us use rectangular coordinates. Then if
the system is holonomous, such a form may be given to the ¢
equations of condition by multiplieation by proper factors and
addition in a proper order as to make every one of them
directly integrable, namely, that form in which the left-hand side
of each of them coincides with the exact differential of one
of the 4 integrals of the equations. For every value-system

. of 4, p, v, then,

oz, O, .
. ()
and the differential equations of the geodesic paths by 181 (i)
now become

m i
"+ Dz bl =0 (id).
1

m "’

These equations differ only in notation from the equations of
the straightest paths (§ 155 (iv)), viz,

i
m n ses
¥ . =0 111),
z,” + 21 B, (i),
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as neither € nor =, appear in the remaining equations to be
satisfied. Every possible path, which after a proper deter-
mination of §, satisfies the first of these equations, also satisfies
the second when E, is made equal to £/, and every solution of
the second is alSo a solution of the first. The satisfying of the
equations (ii) and (iii) is moreover a sufficient condition that
the path should be a geodesic one or a straightest one.

191. Corollary 1. In a holonomous system only one
geodesic path is possible from a possible position in & possible
direction (§ 161).

192. Corollary 2. In a holonomous system there is
always at the least one straightest path between any two
possible positions (§ 173).

193. Proposition. If in a material system every geodesic
path is also a straightest path, then the system is holonomous.

For from every possible position there is only one
straightest path in a given direction by § 161, and conse-
quently by hypothesis only one geodesic path. Moreover, it
is.possible by § 173 to reach every possible position by one of
these paths. Thus the number of degrees of freedom of the
system is equal to the number of its independent coordinates,
and consequently by § 146 the system is holonomous.

194. Corollary. In a system which is not holonomous
a geodesic path is not in general a straightest path.

This follows from the fact that in any direction there is
only one straightest path, whereas many geodesic paths are
possible (§ 161, 187).

195. Note. In a system which is not holonomous a straight-
est path is not in general a geodesic path.

The assertion is proved if examples of systems are given
in which the straightest paths are not amongst the geodesic
ones. Let us choose for simplicity a system in which there
exists only a single unintegrable equation of condition between
the » coordinates p, of the system, and let this be

r

Depp, =0 @)

1

-a
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Let us now assume that every straightest path is also ﬂeo-
desic. Then for all possible systems of values of p, and pp at
least one system of values of p,” can be obtained so as to
satisfy simultaneously the equations 158 (iv) and 185 (i).
Then the equations obtained by subtraction of these equations
in pairs, viz,

po el om S5 -0

are to be satisfied for all possible values of p, and p,. But
these are r equations for the single quantlty I, — =)/,
and they are only consistent with one another when for all
pairs of values of p and

<3p1, 3171,.> (31)1, ap1,>

pv \ op, ~ op, )V —pl .~ p,)F

Let us now substitute in (r— 1) of these equations inde-
pendent of one another, by aid of equation (i), one of the
quantities .’ in terms of the remaining, then the ratios between
the last are now entirely arbitrary quantities. The coefficient
of each of these quantities must consequently vanish. We
thus obtain as a necessary consequence of our assumption
(r — 1) equations between the r functions p,, and their +* first
partial differential coefficients. In particular cases these
equations can be satisfied, for they are satisfied when the
equation (i) is integrable. But in general we have no right
to make the functions p,, subject to even a single condition,
and thus in general our assumption is unwarranted. Hence
the statement is proved.

196. Summary (190-195). In holonomous systems the
ideas of straightest and geodesic paths are completely identical
as regards their content: in systems which are not holonomous
neither of these ideas includes the other, but both have in general
a completely different content.



CHAPTER VI
ON THE STRAIGHTEST DISTANCE IN HOLONOMOUS SYSTEMS
Prefatory Notes

197. This chapter is confined to holonomous systems alone,
and by a system simply, is meant a holonomous one. It will
therefore be assumed that the coordinates p, of the system are
all free coordinates. The number of these coordinates is equal
to the number of degrees of freedom of the system, and is
thus quite unarbitrary; we shall always denote them by 7. i

198. Straightest and geodesic paths in this chapter. are
the same (§ 196), and the common differential equations of
these paths can be written in the form of the  equations

— A Ods
d<Ja cossjp>=—,
PP P app

which are obtained from § 186 or § 160, when we remember
that for the chosen coordinates all the quantities p,, are zero.

199. As a consequence of this, we obtain from § 184 for
the variation of the length of a path which satisfies the fore-
going differential equations, that is for the length of a geodesic

path,
y [ ods 1
8/ds = [— 5 ]
/ Z],p adpp P 4 A

or using § 92,
1

8/ds = 2}[ N a,, €08 Q”sp’]&



T

CHAP. VI SURFACES OF POSITIONS 107

where the quantities 8p, denote the variations of the coordi-

A
nates of the final position, and cos sp, the direction cosines of
the final elements of the geodesic path under consideration.

1. Surfaces of Positions

200. Definition, By a surface of positions is meant, in
general, a continuously connected aggregate of positions. In par-
ticular, however, here by surface will be understood an aggregate
of possible positions of a holonomous system which is character-
ised by the fact that the coordinates of the positions which
belong to it satisfy a single finite equation between them.,

The aggregate of the positions which simultaneously belong
to two or more surfaces we define as the intersection of these
surfaces.

201. Observation 1. Through every position of a surface
an infinite manifold of paths can be drawn, all of whose positions
belong to the surface. We say of these paths that they belong
to or lie on the surface; we employ the same expressions for
the elements of the paths and for infinitely small displace-
ments.

202. Obgervation 2. A path which does not lie on a
surface has in general a finite number of positions common
with it.

For the path is analytically expressed by means of (» — 1)
equations between the coordinates of its positions, the surface
by means of a single equation. By supposition the former
equations are independent of the latter. Therefore in all
they give r equations for the r coordinates of the common
positions, which equations in general permit of none or a finite
number of real solutions.

203. Observation 3. From any position of a surface a
manifold of the (r— 1)th order of infinitely small displace-
ments is possible on the surface.

For of the 7 independent changes of the coordinates which
characterise the displacement, (» — 1) can be arbitrarily chosen ;
the 7th is then determined from the fact that the displacement
lies along the given surface.
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204. Proposition 1. It is always possible to determine
one, and in general only one, direction which is perpendicular
to the (r—1) different infinitely small displacements of a
system from the same position (§ 197).

Let d.p, be the change of the coordinate p, for the rth
of the (r—1) displacements; let 8p, be the change of the co-
ordinate p, for a second displacement. The necessary and
sufficient condition that the latter should be perpendicular
to the former is that (r— 1) equations of the form (§ 58)

2:"2"‘"”’11/)981)0 =0
1

should be satisfied. These, however, give (»— 1) unhomo-
geneous, linear equations for the (r—1) ratios of &p, to
one another; they can thus always be satisfied, and in
general only satisfied, by a single value-system of these
ratios. In exceptional cases indeterminateness may arise ;
this may happen, for instance, when any three of the
(r—1) displacements are so chosen that every displacement
which is perpendicular to two of them is also perpendicular to
the third.

205. Proposition 2. If a direction is perpendicular to
(r—1) different displacements which lie on a surface in a
given position, then it is perpendicular to every displacement
which lies on the surface in that position.

The displacements, which lie on a surface in a given position,
are characterised by the fact that the corresponding dp,’s satisfy
. asingle homogeneous, linear relation between them, namely, the
equation which is obtained by differentiation of the equation
of the surface. If now the (r— 1) value-systems of d,p, satisfy
that equation, then so do also the quantities given by

r-1
) Pp= 27 A P
1

where A, denote arbitrary factors. Thus the dp,’s belong to
any displacement on the surface, and moreover every displace-
ment on the surface can be expressed in this form since it
contains an arbitrary manifold of ‘the (r—1)th order. By
hypothesis now (§ 204)
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zpzc e, Pp0P, =0 ;
11

by multiplying these equations by A, and adding we get

z'pz'cawdp@ =0,
11

which is the required proof (§ 58).

206. Deflnition. A displacement from a position of a
surface is said to be perpendicular to the surface when it is
perpendicular to every displacement which lies on the surface
in the same position.

207. Corollary 1. In every position of a surface there is
always one, and in general only one, direction which is per-
pendicular to the surface.

208. Corollary 2. In every position of a surface it is
always possible to draw one, and in general only one, straight-
est path perpendicular to the surface.

209. Definition 1. By a series of surfaces we mean an
aggregate of surfaces whose equations (§ 200) differ only in
the value of the contained constant. '

210. Notation. Every series of surfaces can be analytic-
ally expressed by an equation of the form

R = constant,

which is obtained by the solution of the equation of one of
the surfaces in terms of the variable constant; and in which
the right-hand side denotes the possible values of this constant,
whilst the left is a function of the coordinates p, To every
surface of this series there corresponds a definite value of
the constant, that is a definite value of the function R. Those
surfaces, for which the value of the function R only differs by
an infinitely small quantity, are called neighbouring surfaces.

211. Definition 2. An orthogonal trajectory of a series of
surfaces is a path which cuts the series orthogonally, 4.e. which

is perpendicular to every surface of the series in the common
positions (§ 202).
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212. Proposition. In order that a path may be an
orthogonal trajectory of the series

IR = constant @)

it is necessary and sufficient that it should satisfy in each of
its positions 7 equations of the form

— A O0R "
~ @y, COS 8P, = f@; (i),

where the quantities sfz\ap denote the inclinations of the path to
the coordinates p,, and f is a quantity identical for all the r
equations, but which changes with a change of p,.

Draw from the position under consideration an infinitely
small displacement whose length is 8o, and denote the resulting
changes of p, and R by &p, and SR, and let this displacement

A
make an angle so with the path considered; then multiply
the equations (ii) each with the corresponding &p, and add;
we thus obtain (§§ 78 (i) and 85)

S - Ef aRS SR
g oS S0 = lp fap,, v, =JOR (ii).

If now the displacement 8o lies on a surface of the series (i),
namely, that surface which has the position under consideration

common with the path, then 8R =0, and thus 3§-= 90°. The
direction of the path is therefore perpendicular to the surface
which it intersects (§ 206), and the equations (ii) are conse-
quently the sufficient conditions that this should happen at
every position. They are, moreover, the necessary conditions,
since, apart from exceptional cases, at every position there is
only one direction which satisfies the given requirement.

213. The orthogonal distance between two neighbouring
surfaces of the series in any position is equal to

FdR.

For, let the displacement 8¢ of the foregoing article coincide
in direction and length with the portion of the orthogonal
trajectory which lies between the two surfaces; then 8¢
coincides with the distance under consideration, and the angle
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A
so is equal to zero, and thus the proof follows from § 122
(ii).

214. The function f which enters into the equations of
the orthogonal trajectory is a root of the equation

1 1< , 0R 9R

mn= b ~— A

Ve 21'21 P0p, 3P,
For this equation follows when we substitute the value of
the 7 direction cosines from § 212 (ii) in the equation § 88,
which they must satisfy. The root to be chosen depends

on whether we consider the diréction of the trajectory positive
along increasing or decreasing values of R.

2. Straightest Distance

215. Definition. By the straightest distance between two
positions of a holonomous system is meant the length of one

- of the straightest paths connecting them,

216. Observation. Two positions may have more than
one straightest distance. Amongst them are the lengths of the
shortest paths between both positions, consequently, too, the
length of the absolutely shortest path. When mention is made
of the shortest distance between two positions as of a quantity
determined without ambiguity, then the last is meant.

217. Analytical Representation. The straightest distance
between two positions can be expressed as a function of the
coordinates of these positions. That position which is regarded
as the initial position will be denoted by 0, and its coordinates
by p,,; whilst that position which is regarded as the final
position will be denoted by 1, and its coordinates by p,, so
that the direction of the straightest path is positive from 0 to
1. The straightest distance for all value-systems of p,, and p,
is then a definite function of these 2» quantities. The
analytical expression for the straightest distance, in terms of
these variables, will be denoted by S, and for shortness this
will be termed the straightest distance of the system.
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218. Observation 1. The function S is in general a
many-valued function of its independent variables. Of the
branches of this function one and only one vanishes with the
vanishing of the difference between p,, and p,. It is to this
branch (§ 216) that we shall refer whenever we say that S is
a given single-valued function.

219. Observation 2. The function S is symmetrical with
regard to p, and p, in the sense that it does not change its
value when for all values of p these quantities are interchanged.

For this interchange only implies an interchange of the
final and initial position.

220. Note. When the straightest distance of a system is
given in terms of any free coordinates, then all the straightest
paths of the system are given in terms of these same coor-
dinates, without its being necessary to know in what manner
the position of the separate material points of the system depends
on these coordinates.

For the straightest distance between any two infinitely
near positions of the system is at the same time the length of
the infinitely small displacement between them; but if this
latter can be expressed in terms of the chosen coordinates,
then the statement follows by § 163.

221. Problem. To obtain from the straightest distance
of a system the expression for the length of its infinitely small
displacements.

In S substitute for p,, p, and for p,, p, + p,, and suppose
8p, to become very small. We already know (§ 57 (iv))
that the distance between the two positions is expressed as
the quadratic root of a homogeneous quadratic function of &p,
S itself cannot thus be expressed in a series of ascending
powers of dp,, but S? can, and in this expansion the quadratic
terms must be the first which do not vanish. If, then, we
denote by a bar that in the function under consideration
Ppo =Pp =P, We obtain for the distance between the two
points, and therefore for the magnitude of the displacement, the

expression
r T 082 T Dod
ds?=1Dp ¢< .- > (PP,
21 21 PuPa) "
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and the function a,, becomes

oS >
.}<apnap¢1
We might equally correctly have

w4

These values of a,, can be employed to obtain indirectly, from
the function S, the straightest paths but the following proposi-
tions enable us to determine them in a more direct way.

222. Proposition. A surface, all of whose positions have
equal straightest distances from a fixed position, is cut ortho-
gonally by all straightest paths through this fixed position.

Let p,, be the coordinates of the fixed position and p, the
coordinates of a position of the surface. Let us pass from the
latter to another position of the surface for which p, has
changed by dp,. In this the straightest distance from the
fixed position has, by hypothesxs not changed ; but by § 199

it has changed by E{m/ @ppy COS sppldppl, where sppl denotes the

angle which the stmlghtest path at 1 makes with the direction
of p, Thus then

4 — A
2" w84y, €08 $pyilpy = 0,
1

and this equation expresses that the shortest path is perpen-
dicular to the displacement of dp, (§§ 85 and 78 (i)). Since
this holds for any displacement which lies on the surface
at 1, the proposition follows (§ 206).

223. Corollary 1. The straightest paths which pass
through a fixed position are the orthogonal trajectories of a series
of surfaces which satisfy the condition that all the positions of
each one of them have the same distance from this fixed position.

224. Corollary 2. All the straightest paths which pass
through the fixed position 0 satisfy the r equations

A oS .
~ a,, cos sp, = 3—;—’1 (@,

I
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where p,, are to be considered the coordinates of the variable

position of the path, and cos {‘;’n the direction cosine of the
path in this position.

For the equations (i) are the equations of the orthogonal
trajectories of a series of surfaces which are represented by
the equation

S = constant (ii).

For if S were any function of the variable coordinates p, ,

then by § 212 the equations of the orthogonal trajectories
would be

A oS
N a,, cos sp, =f67,,’ (iii),

and the perpendicular distance between two neighbouring
surfaces would be equal to fdS. On account of the special
nature (§§ 217, 222) of our function S, however, this distance
is equal to dS itself, and consequently

f=1 (@iv),
and the general equations (iii) take the particular form (i).

225. Observation 1. The equations 224 (i), which are
differential equations of the first order, can also be regarded as
the equations of straightest paths in a finite form, if we regard

Ppo 88 variable and the 27 quantities p,, and sp,, as constants.
For let us determine from these equations a series of positions
0 in such a manner that with fixed values of D,y the values of

;}\zﬂ do not change, then we obtain positions 0 such that the

straightest paths drawn from them towards the position 1 have

in this position 1 a fixed direction. Since now only one

straightest path having this property is pcssible, all the posi-

tions 0 so obtained must be on this one path; their aggregate

gorms this path and this last is expressed by the equations
224 (i).

226. Observation 2. In the proof of § 222 we might
equally well have made 1 the fixed and 0 the variable position.

In place of the equations § 224 (i) we should then have
obtained the equations
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A 0S .
N @y €08 8P,y = — 5};0 @)

The difference in the sign of the right-hand side results
from the fact that the direction from the fixed position is now
negative (§ 217). Like the equations § 224 (i), the equations
§ 226 (i) also represent straightest paths. They are the
differential equations of the first order of all straightest paths
which pass through the fixed position p,, and at the same time
the finite equations of a definite path which passes through the

A
position p,, and there makes with the coordinates the angles sp,.

227. Corollary 3. The straightest distance S of a system
satisfies, as a function of p,, the partial differential equation of

the first order
r oS oS

22 g o

and as a function of p, the partial differential equation of the

first order
L r aS aS
&
eb = =1 ii).
2"2 *19p, Oy, ®)

For both equations follow from § 214 and § 224 (iv);
they are also immediately found when we substitute in § 88
the direction cosines of a straightest path expressed by means
of S from § 224 (i) or 226 (i), which the angles of any
inclination to the coordinates satisfy.

228. Proposition. If we erect at all positions of any
surface straightest paths perpendicular to the surface, and cut
off from each equal lengths, then the surface so obtained is
cut orthogonally by each of these straightest paths.

Let the positions of the original surface be denoted by 0, and

A
of the new surface by 1. Let sp,, and sfz\)n denote the angles
which a chosen straightest path makes with the coordinates at
the first and second surface respectively. If we proceed from
this straightest path to any neighbouring one, then the length
of the path changes (§ 199) by
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4 A Le A
21’ ‘Ja—»;l €08 8,,dP,, — 21"‘ Ty CO8 8ol

where dp, and dp,, denote the changes of p, in the positions 1
and 0. But by construction this change is zero, and also by

construction
r
2{‘\/“»0 co8 8p,dp, = 0,
1

for every path is perpendicular to the original surface.
Thus then also

r A
Z‘W @,y CO8 8P, dp, =0
1

and since dp, denotes any displacement on the surface in the
position 1, the conclusion follows.

229. Corollary 1. The orthogonal trajectories of any
series of surfaces, each of which in all its positions has the
same perpendicular straightest distance from its neighbouring
ones, are straightest paths.

230. Oorollary 2. If R is a function of the r coordinates
p, of such a nature that the equation

R = constant @)

represents a series of surfaces each of which has in all its
positions the same perpendicular straightest distance dR from
its neighbours, then the equations

A R i
Va,, cos sp, = , (i1)
are the equations of the orthogonal trajectories, and consequently
the equations of the straightest paths. And, moreover, these
equations are differential equations of the first order for these
paths.

For if R were any function whatever of p, then the
equations 212 (ii) would represent the orthogonal trajectories
of the series (i), and the perpendicular distance between two
neighbouring surfaces would, by § 213, be equal to fdR.
According to our particular hypothesis, however, this distance
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is constant and equal to dR, consequently f=1, and thus
the equations 212 (ii) reduce to the above-mentioned ones.

231. Corollary 3. If the equation
R = constant
represents a series of surfaces of such a nature that each of
them in all its positions has the same straightest orthogonal
distance dR from its neighbours, then the function R satisfies
the partial differential equation

7 OR OR

2 2 "’Pap ap

for this equation follows from § 214 and § 230. It is also
immediately found when we substitute the direction cogjines of
a straightest path, given by § 230 (ii), in the equation § 88,
which the angles of every inclination to the coordinates
satisfy.

232. Proposition 1. (Converse of § 231.) If the func-
tion R satisfies the partial differential equation

2 Z P’ap ap

R = constant

then the equation

represents a series of surfaces of such a nature that each of
them in all its positions has the same orthogonal straightest
distance from its neighbours, and, moreover, this distance
is measured by the change of R.

For if R were any function, then the orthogonal tra-
jectories of the series would be given by equations of the
form § 212 (ii), and the orthogonal distance between two neigh-
bounng surfaces would in every position be fdR. But by our
special hypothesis as to the nature of R, f=1 (§ 214), and
thus the proposition is true.

233. Proposition 2. If the function R of P, is any solution
of the partial differential equation
T OROR

2 2 p«ap ;=1 @,
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then the equations
— A OR "
Na,, cos sp, = %, (1)
are the equations of straightest paths. And, moreover, they
are differential equations of the first order of the straightest
paths represented by them.
This follows immediately from § 230 and § 232.

234. Observation. Although every path which is repre-
sented by the equations 233 (ii) is a straightest path, yet in
general every straightest path cannot conversely be represented
in this form. The manifold of straightest paths, which are
contained in the given form, depends rather on the manifold
which the function R as a solution of the differential equation
possesses, that is on the number of its arbitrary constants.

In particular, however, if R is a complete solution, Z.e. if R
contains r arbitrary constants a, a, . . . a,_,, the first of
which is the additive constant necessarily present, then all
straightest paths of the system may be expressed in the form
§ 233 (ii). For the right-hand sides of these r equations (of which
only r — 1 are independent of one another) contain then (r»— 1)
constants which are sufficient to furnish an arbitrarily chosen
direction of the path represented at an arbitrary position in
terms of (r — 1) independent direction cosines. But if we can
arbitrarily choose one position of the path represented, and its
direction at this position, then we can represent all straightest
paths.

235. Proposition 3. (Jacobi’s Proposition.) Let R denote
a complete solution of the differential equation

. oR aI\.

2[’2 oo ap ap (i)’

and let its arbltmry constants with the exception of the addmve

one, be a;, @, . . . a,_,. Then the (r— 1) equations
oR "
5 =B (i),
a,

where the 8,’s are (r— 1) new arbitrary constants, give tl.e
equations of the straightest paths of the system in a finite form.
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As proof we show that the paths which are represented
by the equations (ii) are orthogonal trajectories of the series

R = constant (iii) ;
whence the proof follows by §§ 232 and 229.

In order now firstly to find the direction of the path re-
presented, we differentiate the equations (ii) each in its own
direction, 7.e. we form these equations for two positions of the
path at distance ds, in which p, differs from its next value by
dp,, then we subtract and divide by ds. We thus obtain
(r—1) equations of the form

r aﬁR -
S 3

o, 05

or, when we substitute in these by §§ 79 and 78 the direction
cosines of the element of the path under consideration,

aaR'.r:O (iV);

which equations give (» — 1) unhomogeneous, linear equations
for the (» — 1) ratios of the direction cosines to one another.

Secondly, we notice that the equation (i) holds for all
values of the constants a,; we can thus differentiate them with
regard to these quantities, and we then obtain (» — 1) equations,
which may be written in the form

TOR 'R
- =0 v),
EIPappzl b”.ap aa ( )
and which express relations which the partial differential
coefficients of R must satisfy as a consequence of our particular
hypotheses with regard to this function.

If now the equations (ii) represent a definite path for the
values of a, and B, under consideration, then from the equations
(iv) must be obtained singly-determined values for the ratios of
the direction cosines to one of them. But these same single

0
values for the ratios of the quantities il to one of them must

be given by the equations (v). Thus ;f f i8 a factor which
still remains to be determined, then
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A R
Ja;cossp,= a

Thus by § 212 the path under consideration is the orthogonal
trajectory of the series (iii), as was to be proved. The factor
f is found equal to unity.

The hypothesis that the (r— 1) equations (ii) represent,
for definite values of a, and B, a definite path, would not
be correct if these equations were not independent of one
another. In that case the arbitrary constants would not be
independent of one another, and the solution would not be, as
was supposed, a complete one.

236. Problem. From any complete solution R of the
differential equations 235 (i) to obtain the straightest distance
S of the system.

By S is again to be understood the straightest distance
between two positions 0 and 1 with the coordinates p,, and p,,.
In the (r — 1) equations, § 235 (ii), we substitute for p, in the
first place p,, and in the second p,. From the resulting
(2r — 2) equations we eliminate B, and express a, as functions
of p,, and p,. These functions are symmetrical with regard
to p,, and p,, and give those values which a, must have in
order that the paths defined by them may pass through the
definite positions 0 and 1.

We have then, in the first place, for any position 1, by §§

224 (i) and 233 (ii),
08 <8R> .
apPl - 9P,/ ’

and secondly, for any position 0, by §§ 226 (i) and 233 (i),

()
appo_ app 0.

We substitute in the right-hand side of these equations the
values of a, in terms of p, and p,, and put p, in the first
equal to p,, and in the second equal to p,,; we then obtain
the first differential coefficients of S with regard to all the in-
dependent variables expressed as functions of these variables.
S can then be found by a single integration.
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CHAPTER VII
KINEMATICS

1. Vector Quantities with regard to a|System

237. Definition. A vector quantity with regard to a
gystem is any quantity which bears a relation to the system,
and which has the same kind of mathematical manifold as a
conceivable displacement of the system.

238. Note 1. A displacement of a system is itself a
vector quantity with regard to the system. Every product
of a displacement of the system with any scalar quantity what-
ever is a vector quantity with regard to the system.

239. Note 2. Every vector quantity with regard to a
system can be represented geometrically by a conceivable dis-
placement of the system. The direction of the displacement
representing it is called the direction of the vector quantity.
The measure of the representation can and will always be so
chosen that the displacement representing it is indefinitely
small. Every vector with regard to a system which changes
with the position of the system can then be represented as an
infinitely small displacement of the system from the position
to which its instantaneous value belongs.

240. Note 3. A vector quantity with regard to a single
material point is a vector in the ordinary sense of the word.
Every vector with regard to a point can be represented by a
geometrical displacement of the point; in particular, by an
infinitely small displacement from its actual position.

241. Note 4 By components and reduced components
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of a vector are meant those vectors of the same kind which
are represented by the components and reduced components of
that infinitely small displacement which represents the original
vector (§§ 48, 71).

The reduced component of a definite vector in the direction
of a coordinate p, is called for short the component of the
vector along p,, or the vector along the coordinate p,.

When no misunderstanding can arise, the magnitude of
such a component is simply called a component or reduced
component.

242. Problem la. To deduce the components %, of a
vector along the general coordinates p, from the components 4,
along the 3n rectangular coordinates.

Let dz, be the components along x, of that displacement
which represents the vector quantity, and let d;,, _be the com-
ponents of the same displacement along p,, then dp, is given in
terms of dz, in § 80. But , and 4, are respectively propor-
tional to dp, and dz,; consequently

k _ 3n anaxv
(A : :'avp}'v = : :"“hr
1

243. Problem 1b. To deduce the components %, of a
vector along rectangular coordinates, from the components %,
of the vector along p,.

The equations § 242 give only r equations for the 3n
quantities %,, from which the latter consequently cannot be
found. In fact the problem is in general indeterminate. For
all conceivable positions and displacements of a system cannot
be expressed in terms of p, but only a part of them, amongst
which are the possible displacements.

The proposition can thus only be solved in the case when
the given vector is parallel to a displacement which can be
expressed in terms of p, and its changes. In this case, by § 81,

r
h,= 21., Book,s

* 244. Problem 2a. To determine the magnitude % of a
vector, from its components %, along rectangular coordinates.




b

i VECTOR QUANTITIES OF A SYSTEM 123
- Using § 83 we obtain
8n m
M= >v—ht
21 m, v

245. Problem 2b. To determine the magnitude % of a
vector in terms of its components %, along the general co-
ordinates p,. ] .

The problem is again, as in § 243, in general indeterminate.

A solution is only possible when the vector in question 18
parallel to a displacement which can be represented in terms of

P, and then, by § 82,
2= zpzwbwk’k,.
1 1

246. Problem 3a. To find the components of a vector in
the direction of any displacement ds from its components
h, along z,. _

If ds’ denote the length and dwz,’ the reduced components
of the displacement by which we represent the vector, then the
component of this displacement in the direction of ds is, by §§ 48
and 84, .

a5’ cos ' = =S da !
Ccos —ds‘-i‘v YT, .

If we multiply this equation by the ratio of the magnitude
of the vector to the length of the displacement by which it is
represented, we obtain on the left-hand side the required com-
ponent and on the right-hand side %, instead of dz,’; we
thus get as a solution of the problem the required quantity
equal to

8n dz

2, R

8n ’;’L A
2" — h, cos sz,.
o m,

247. Problem 3b. To find the components of a vector in
the direction of any displacement ds, expressed in terms of
»,, from the components %, along p,.

or, by § 72, equal to
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If we employ the same method as in the previous problem
we obtain by §§ 48 and 85 the required quantity equal to

" d
Zp kpﬁ’ ,

1

or, by §§ 78 and 89, equal to
r r - A
2’2’ bP'k P Jaov Cos $p,.
1 1

248. Observation. Thus although in general all com-
ponents of a vector are not determined by means of the
quantities %, yet the components of the vector are de-
termined by means of these quantities in all such directions
as can be expressed in terms of p,, and consequently in every
possible direction.

249. Proposition 1. In order that the vector, whose
components along p, are the quantities %, may be perpendicular
to a displacement for which p, suffer the changes dp, it is
necessary and sufficient that the equation

Dek,dp, =0
i 1
should be satisfied.
_ This follows from § 85 when we consider %, proportional to
dp,.
250. Proposition 2. In order that the vector, whose
components along p, are £, should be perpendicular to every

possible displacement of the system, it is necessary and
sufficient that the  quantities %, can be expressed in the form

K
k,= 2" Dxe Vx>
1

where p,, occur in the equations of condition of the system
(§ 130) and ¢, are quantities to be determined as we please.
This follows from §§ 148 and 150 when we consider %,

expressed by means of dz;,,.

1.251.8Note 1.  Vectors with regard to one and the same




viI VECTOR QUANTITIES OF A SYSTEM 125

system can be compounded and resolved like the conceivable
displacements of the system.

Consequently, the compounding of the vectors of the same
system follows the rules of algebraic addition.

252. Note 2. Vectors with regard to different systems
are to be considered quantities of a different nature; they
can neither be compounded nor added.

253. Note 3. A vector quantity with regard to a given
system may be considered as a vector quantity of any more
extended system of which the original forms a part.

254. Problem 1. The same vector quantities may, at
one time, be considered as vector quantities with regard to a
partial system, and, at another time, as vector quantities with
regard to the complete system. From the components A,
along the rectangular coordinates z, in the first case, the
components %, along the corresponding coordinates z,’ in the
second can be determined.

Let m be the mass of the partial system, m’ the mass
of the complete system. The coordinates #, of the partial
system ' are at the same time coordinates of the complete
system, only for clearness they are denoted as such by z,/. If
now the partial system suffers any displacement, which is, of
course, at the same time a displacement of the complete system,
then dz,=dx, for the common coordinates, whereas dz,/ =0
for the remaining ones. Now, by § 73 m'dx/=mdz’ and
mdz, = m dz,, consequently m/dz,’ =mdz, In the case of a
vector which is represented by means of this displacement,
the component along z, is proportional to da?,, and that along
2, to dz/. Thus we obtain

. w'h,) =mh,
for every v which the systems have in common, whereas for

the remainder
h/=0.

255. Problem 2. The same vector quantities may, at
one time, be considered as vector quantities with regard to a
partial system, and, at another time, as vector quantities with
regard to the complete system. To determine, in the former
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case, the components %,’ along the coordinates p,” in terms of
the components %, along the coordinates p,.

Let m be again the mass of the partial system, m’ that
of the complete. - We assume that the coordinates 2, of the
partial system are also coordinates of the complete system,
only for clearness in the latter case they will be denoted by o,
Of the coordinates p, which are not common to the two
systems we assume that they are not coordinates of the partial
system. With these assumptions, an analogous consideration
to the foregoing (§ 254) gives

m'k, =mk,
for the common coordinates, whereas for the remainder
k) =0.
But without the assumptions named the problem is indeter-
minate.

2. Motion of Systems
Explanations

256. (1) The passage of a system of material points from
an initial position to a final one, considered with reference to the
time and manner of the passage, is called a motion of the system
from the initial to the final position (cf. § 27).

Consequently, in any definite motion the system describes
a definite path, and moreover it describes definite lengths in

definite times.

257. (2) Every motion of a system along a conceivable
path is called a conceivable motion of the system (§ 11).

258. (3) Every motion of a system along a possible path
is called a possible motion of the system (§ 112).

259. (4) Kinematics, or the theory of pure motion, treats
of the conceivable and possible motions of systems.

So long as we deal only with normal systems (§§ 119,
120), kinematical investigations almost coincide with those of
geometry. But when an abnormal system is investigated
and the time appears in the equations of condition of the
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system, then kinematics possesses greater generality than
geometry. However, it is not necessary to enter into purely
kinematical investigations here; we may then be satisfied with
the discussion of a series of fundamental ideas.

260. Analytical Representation. The motion of & system
is analytically represented when in the representation of the
path described, the time ¢ is taken as independent variable, or,
what is the same thing, when the coordinates of the position
of the system are given as functions of the time.

Following Newton, the differential coefficients of all quanti-
ties with regard to the time will be denoted by dots.

Velocity

261. Definition 1. The instantaneous rate of motion of a
system is called its velocity.

The velocity is determined by the change which the posi-
tion of the system suffers in an infinitely small time, and
by the time itself. It is measured by the ratio of these
quantities which is independent of their absolute value.

By the condition of a system we shall mean its position
and velocity.

262. Oorollary. The velocity of a system may be re-
garded as a vector quantity with regard to the system. The
direction of the velocity is then the direction of the instan-
taneous path-element; the magnitude of the velocity is equal
to the differential coefficient of the length of path traversed
with regard to the time.

The magnitude of the velocity is also called the velocity of
the system along its path, or, when misunderstanding cannot
arise, the velocity simply.

263. Definition 2. A motion of a system in which the
velocity does not change its magnitude is called a uniform
motion.

264. Observation. A straight motion of a system is
motion in a straight path. In this motion the velocity does
not change its direction.

265. Problem 1. To express the magnitude of the
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velocity, its components and reduced components in the
direction of the rectangular coordinates, in terms of the rates
of change of these coordinates.

The magnitude v of the velocity is given by the positive
root of the equation,

2 3n
m'v’ = m<§> = 21:' m.;bv’.

Thus, then (§ 241), the components of the velocity in the direc-
tion of z, are equal to

m

—_ ‘i:w
m

and the reduced components in the same direction, or the
components along z,, to
my.
m v
266. Observation. The magnitude of the velocity of a
system is the quadratic mean value of the magnitudes of the
velocities of all its particles.

267. Problem 2. To express the magnitude of the velocity,
its components and reduced components along the general
coordinates p,, in terms of the rates of change p, of these
coordinates.

By transformation of § 265 by means of § 57 we obtain
the magnitude of the velocity as the positive root of the

equation
T

,
2= S S,
1

1

Thence, by § 241, the components in direction of p, are equal to

1 .
=5 od p,,
o
and the reduced components in the same direction, or the
components along p,, to

r

zaawj),.

1
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Momentum

268. Deflnition. The product of the mass of a system
into its velocity is called the quantity of motion, or momentum,
of the system.

The momentum of the system is thus a vector quantity
with regard to the system. The component of the momentum
along any coordinate will usually be simply called the
momentum of the system along this coordinate (§ 241).

269. Notation. The momenta of a system along the
general coordinates p, will always be denoted by g,.

270. Problem 1. To express the momenta g, of a system
along p, in terms of the rates of change of these coordinates.
From §§ 268 and 267 we obtain

r
gp = -mzaap,p,.
1

271. Problem 2. To express the rates of change of the
general coordinates p, in terms of the momenta of the system
along these coordinates.

From the foregoing equation we obtain

. 1
Pe= 10 2 el
1

272. Observation. The velocity and the quantity of
motion of a system are vectors with regard to the system of
such a nature that they are always parallel to possible dis-
placements of the system (§§ 243, 245).

Acceleration

273. Deflnition. The instantaneous rate of change of the
velocity of a system is called its acceleration.

The acceleration is determined by the change which the
velocity suffers in an infinitely small time and by the time
itself; it is measured by the ratio of these two quantities
which is independent of their absolute value.

274. Oorollary. The acceleration of a system may be
K
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regarded as a vector quantity with regard to the system. We
take from the actual position of the system two displacements,
of which the one represents the actual velocity, the other the
velocity at the next instant; then the difference of these gives
a new displacement, whose direction is the direction of the
acceleration, whilst the magnitude of the acceleration is equal
to the ratio of the length of this new displacement to the
differential of the time.

275. Problem 1. To express the magnitude f of the ac-
celeration and its components along the rectangular coordinates
in terms of the differential coefficients of these coordinates with
regard to the time.

The components of the velocity along 2,, now, and after
the time d¢, are (§ 265)

Dop and % v at,
m m m

1 4

m
the components of their difference are thus n—:&é,dt; the ratio

of these to the time d¢ gives the components of the acceleration
along z, equal to

"l'm.

—z',

m

whence by § 244 the magnitude of the acceleration is the
positive root of the equation

nft=Shmp?
1

276. Observation. The magnitude of the acceleration
of a material system is the quadratic mean value of the magni-
tudes of the accelerations of its particles.

277. Problem 2. To express the components f, of the
acceleration of a system along the general coordinates p, in
terms of the differential coefficients of these with regard to
the time.

By § 242,

3n,

m, o
f p = Zy—av »
1 m

and in this is to be substituted, as in § 108,
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. e 1 ~g 0

Thus proceeding as in § 108 we obtain

2 ¢+2 2 <*-- “%ap >p,p,

op,

278. Observation 1. The components of the acceleration
are thus in general linear functions of the second differential
coefficients of the coordinates, quadratic functions of the first
differential coefficients, and implicit functions of the coordi-
nates themselves.

279. Observation 2. The acceleration of a system is not
necessarily parallel to a possible displacement of a system, nor
even to a displacement which can be expressed by the coordi-
nates p,.

The components f, do not therefore in general suffice to
determine the magnitude of the acceleration nor even its com-
ponents along all the rectangular coordinates (§§ 243, 245). On
the other hand the quantities f, are sufficient to determine the
components of the acceleration in the direction of every one
of the possible motions of the system (§ 248).

280. Problem 3. To find the component of the accelera-
" tion in the direction of the path.
The direction cosines of the path are by § 72 equal to

[ dx", and thus by § 265 toﬁ 2, Thence follows by
m

§ 246, with the help of § 275 for the tangential com-
ponent f,,

where s is the current length of the path.

281. Note. If we resolve the acceleration of a system
into two components, of which one is in the direction of the path
and the other is perpendicular to the path, then the magnitude
of the latter is equal to the product of the curvature of the path
into the square of the velocity of the system in the path.



132 FIRST BOOK CHAP.

If, in equation § 107 (iii), we take the time ¢ as independent

variable, we obtain
n

mtc’ = vaﬁf —m§® ’

1

thus by use of §§ 275 and 280
e =7 — f2.
If now we call the second, the radial or centrifugal com-

ponent of the acceleration f,, then f%=f?+ f.% for £, and f, are
perpendicular to one another; consequently

fo=cr,
as was to be proved.

Energy

282. Definition. The energy of a system is half the
product of its mass into the square of the magnitude of its
velocity.

283. Problem 1. To express the energy E of a system
in terms of the rates of change of its rectangular coordinates.
By § 265

8n
E=imi= 72- m2
1

284, Corollary 1. The energy of a system is the sum
of the energies of its particles.

285. Corollary 2. If several systems together form a
greater system, then the energy of the latter is the sum of the
energies of the former.

286. Problem 2. To express the energy of a system in
terms of the rates of change of the general coordinates of
the system and the momenta along these coordinates.

Using §§ 267, 270, 271, we obtain successively

E= %mZ}Z}awj) Do @)
= ,}2:., 9,5, (i)

.\ . SRS
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= -}m}'llev oo Zpdpt (ii).

287. Observation (on §§ 261-286). The velocity, momen-
tum, acceleration, and energy of a system are defined inde-
pendently of their analytical representation, and, in particular,
independently of the choice of the coordinates of the system.

Use of Partial Differential Coefficients

288. Notation (¢/. § 90). The partial differential of the
energy E will be denoted by 0,E only when we consider the
coordinates p, and their rates of change p, as the independent
variable elements of the energy (§ 286 (i)).

The partial differential of the energy E will be denoted by
0,E only when we consider the coordinates p, and the momenta
9, along these coordinates as the independent variable elements
of the energy (§ 286 (iii)).

Either of these assumptions excludes the other. When
misunderstanding cannot arise, any partial differential of E
will be denoted as usual by OE, eg. the first or the second of
those mentioned above, or any third kind.

289. Note 1. The momenta g, of a system along the
coordinates p, may be expressed as partial differential coefficients
of the energy of the system with regard to the rates of change
of the coordinates.

For, by equation § 286 (i) and § 270 (cf. § 91),

?
9p=a;Tp-

290. Note 2. The rates of change p, of the coordinates

* p, of a system may be expressed as partial differential coeffi-

cients of the energy of the system with regard to the momenta..
For, by equation § 286 (iii), and § 271 (cf. § 94),
oma aqE
pp = a—q:'
291, Note 8. The components f, of the acceleration of

a system along the coordinates p, can be expressed as partial
differential coefficients of the energy.
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For, by equation 286 (i), firstly,

% _ S s
=m od 2
ap P 21 ’.p'

thus

dt(ap >— "‘2’“»«”""’”2 E'—”N”n

and, secondly, by the same equation,

apE = %mz 2 Tpfp‘l‘

By subtmctmg the second equation from the first and
comparing with § 227,
mf, = <3 E> o, Q).
di\op,/  op, '
for which may be written (cf. § 289)

9,E
mfp =g, ap,

292. Note 4. If we change one coordinate p, of & system
twice by the same infinitely small amount, whereby the first time
we let the rates of change of the coordinates, the second time
the momenta along these coordinates, retain their original
values, then the energy of the system in the two cases suffers
an equal and opposite change.

For, if the equation § 95 (i) is multiplied by mds and
divided by df*, we get

0,E 0,E
o, = "o,
which proves the statement.

293. Proposition. If the position of a system suffers
twice the same infinitely small displacements whereby the first
time the rates of change of the coordinates, and the second time
the momenta along the coordinates, retain their original values,
then the energy of the system in the two cases suffers an equal
and opposite change.

For the change of the energy is in the first case
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7o
SPE = 217—65 S
and in the second
1 0,E
= ol .
s‘lE 4 apf @f ’
thus then, by § 292,
8 E= -3 E

294. Corollary. The components of the acceleration of a
system along its coordinates p, can also (by §§ 291 (ii) and
292) be expressed in the form

0,E
=g 9
mf,=g,+ 310,,'

Concluding Note on the First Book

295. As has already been stated in the prefatory note
(§ 1), no appeal is made to experience in the investigations °
of this book. Consequently, if in the sequel we again meet
with the results here obtained, we shall know that they are
not obtained from experience but from the given laws of our
intuition and thought, combined with a series of arbitrary
statements.

It is true that the formation of the ideas and the develop-
ment of their relations has only been performed with a view to
possible experiences; it is thus none the less true that ex-
perience alone must decide on the value or worthlessness of our
investigations. But the correctness or incorrectness of these
investigations can be neither confirmed nor contradicted by
any possible future experiences.
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296. Prefatory Note. In this second book we shall
understand times, spaces, and masses to be symbols for objects
of external experience; symbols whose properties, however,
are consistent with the properties that we have previously
assigned to these quantities either by definition or as being
forms of our internal intuition. Our statements concerning
the relations between times, spaces, and masses must therefore
satisfy henceforth not only the demands of thought, but must
also be in accordance with possible, and, in particular, future
experiences. These statements are based, therefore, not only
on the laws of our intuition and thought, but in addition
on experience. The part depending on the latter, in so far as
it is not already contained in the fundamental ideas, will
be comprised in a single general statement which we shall take
for our ,Fundamental Law. No further appeal is made to
experience. The question of the correctness of our statements
is thus coincident with the question of the correctness or
general validity of that single statement.

CHAPTER 1
TIME, SPACE, AND MASS

297. Time, space, and mass in themselves are in no sense
capable of being made the subjects of our experience, but
only definite times, space-quantities, and masses. Any
definite time, space-quantity, or mass may form the result of
a definite experience. 'We make, that is to say, these concep-
tions symbols for objects of external experience in that we settle
by what sensible perceptions we intend to determine definite
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times, space-quantities, or masses. The relations which we
state as existing between times, spaces, and masses, must then
in future be looked upon as relations between these sensible
perceptions.

298. Rule 1. We determine the duration of time by
means of a chronometer, from the number of beats of its
pendulum. The unit of duration is settled by arbitrary con-
vention. To specify any given instant, we use the time that
has elapsed between it and a certain instant determined by a
further arbitrary convention.

This rule contains nothing empirical which can prevent us
from considering time as an always independent and never
dependent quantity which varies continuously from one value
to another. The rule is also determinate and unique, except
for the uncertainties which we always fail to eliminate from
our experience, both past and future.

299. Rule 2. We determine space-relations according to
the methods of practical geometry by means of a scale. The
unit of length is settled by arbitrary convention. A given
point in space is specified by its relative position with regard
to a system of coordinates fixed with reference to the fixed
stars and determined by convention.

‘We know by experience that we are never led into contra-
dictions when we apply all the results of Euclidean geometry
to space-relations determined in this manner. The rule is
also determinate and unique, except for the uncertainties
which we always fail to eliminate from our actual experience,
both past and future.

300. Rule 3. The mass of bodies that we can handle is
determined by weighing. The unit of mass is the mass of
some body settled by arbitrary convention.

The mass of a tangible body as determined by this rule
possesses the properties attributed to the ideally defined mass
(§ 4). That is to say, it can be conceived as split up into any
number of equal parts, each of which is indestructible and un-
changeable and capable of being employed as a mark to refer,
without ambiguity, a point of space at one time to a point of
space at any other time (§ 3).. The rule is also determinate
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and unique as regards bodies which we can handle, apart from
the uncertainties which we cannot eliminate from our actual
experience, either past or future.

301. Addition to Rule 3. We admit the presumption
that in addition to the bodies which we can handle there are
other bodies which we can neither handle, move, nor place in
the balance, and to which Rule 3 has no application. The
mass of such bodies can only be determined by hypothesis.

In such hypothesis we are at liberty to endow these masses
only with those properties which are consistent with the pro-
perties of the ideally defined mass.

302. Observation 1. The three foregoing rules are not
new definitions of the quantities time, space, and mass, which
have been completely defined previously. They present rather
the laws of transformation by means of which we translate ex-
ternal experience, 4.e. concrete sensations and perceptions, into
the symbolic languige of the images of them which we form
(vide Introduction), and by which conversely the necessary
consequents of this image are again referred to the domain of
possible sensible perceptions. Thus, only through these three
rules can the symbols time, space, and mass become parts of
our images of external objects. Again, only by these three
rules are they subjected to further demands than are neces-
sitated by our thought.

303. Observation 2. The indeterminateness which our
rules involve and which we have acknowledged, does not arise
from the indeterminateness of our images, nor of our laws
of transformation, but from the indeterminateness of the ex-
ternal experience which has to be transformed. By this we
mean that there is no actual method which, with the aid
of our senses, determines time more accurately than can be
done by the help of the best chronometer; nor position than
when it is referred to a system of coordinates fixed with
regard to the fixed stars; nor mass than when determined by
the best balance.

304. Observation 3. There is, nevertheless, some appa-
rent warrant for the question whether our three rules furnish
true or absolute measures of time, space, and mass, and this
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question must in all probability be answered in the negative,
inasmuch as our rules are obviously in part fortuitous and arbi-
trary. In truth, however, this question needs no discussion
here, not affecting the correctness of our statements, even if
we attached to the question a definite meaning and answered
it in the negative. It is sufficient that our rules determine
such measures as enable us to express without ambiguity
the results of past and future experiences. Should we agree
to use other measures, then the form of our statements would
suffer corresponding changes, but in such a manner that the
experiences, both past and future, expressed thereby, would
remain the same.

Material Systems

305. Explanation. By a material system is henceforth
understood a system of concrete masses, whose properties are
not inconsistent with the properties of the ideally defined
material system (§ 121). Thus in a natural material system
some positions and displacements are possible, others im-
possible ; and the aggregate of possible positions and dis-
placements satisfies the conditions of continuity (§ 121). In
a natural free system the connections are independent of the
position of the system relative to all masses not included in
it, as well as of the time (§ 122).

306. Note therempon. We know from experience that
there is an actual content corresponding to the conceptions
so defined.

For, firstly, experience teaches us that there are connections,
and moreover continuous connections, between the masses of
nature. There are thus material systems in the sense of § 305.
We may even assert that other than continuous connections
are not found in nature, and that, consequently, every natural
system of material points is a material system.

Secondly, experience teaches us that the connections of a
material system may be independent of its position relative to
other systems, and of its absolute position. We may even
assert that this independence always appears, so long as a
material system is sufficiently distant in space from all other

PSP prg———

R . e wdiia



:

1 TIME, SPACE, AND MASS 143

systems. Thus, there are systems which have only internal
connections, and we possess also a genmeral method for recog-
nising and constructing such systems.

Thirdly and finally, experience teaches us that absolute
time has no effect on the behaviour of natural systems which
are only subject to internal connections. Every such natural
system is thus subject only to mormal (§ 119) connections
and is therefore a free system. There are thus free systems
in the sense of § 305, and we can construct free systems and
recognise them as such independently of the statements which
we shall have to make again concerning free systems.

307. Observation. The normal connections of free
systems form those very properties which exist independently
of the time. It is the problem of experimental physics to
“separate those finite groups of masses which can exist inde-
pendently as free systems, from the infinite world of pheno-
mena, and to deduce from those phenomena which occur in
time and in connection with other systems those properties
which are unaffected by time.



CHAPTER II
THE FUNDAMENTAL LAW

308. We consider the problem of mechanics to be to
deduce from the properties of a material system which are
independent of the time those phenomena which take place in
time and the properties which depend on the time. For the
solution of this problem we lay down the following, and only
the following, fundamental law, inferred from experience.

309. Fundamental Law. Every free system persists in
its state of rest or of uniform motion in a straightest path.

Systema omne liberum. perseverare in statw suo quiescends vel
movendi uniformiter tn directissimam.

310. Note 1. The fundamental law is so worded that
its statement has reference only to free systems. But since
a portion of a free system can be an unfree (unfreies) system,
results may be deduced from the fundamental law which have
reference to unfree systems.

311. Note 2. The aggregate of inferences with regard to
a free system and its unfree portions which may be drawn
from the fundamental law forms the content of mechanics.
Our mechanics does not recognise other causes of motion than
those which arise from the law. The knowledge of the funda-
mental law is, according to our view of it, not only necessary
for the solution of the problem of mechanics, but also sufficient
for this purpose, and this is an essential part of our assertion.

312. Note 3. (Deflnition.) Every motion of a free
material system, or of its parts, which is consistent with the
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fundamental law, we call a natural motion of the system
in contradistinction to its conceivable and possible motions
(8§ 257, 258).

Thus mechanics treats of the natural motions of free
material systems and their parts.

313. Note 4 We consider a phenomenon of the material
world to be mechanically and thereby physically explained when
we have proved it a necessary consequence of the fundamental
law and of those properties of material systems which are
independent of the time.

314. Note 5. The complete explanation of the phenomena
of the material world would therefore comprise: (1) their
mechanical or physical explanation; (2) an explanation of the
fundamental law; (3) the explanation of those properties
of the material world which are independent of time. The
second and third of these explanations we, however, regard as
beyond the domain of physics..

Validity of the Fundamental Law

315. We consider the law to be the probable outcome of
most general experience. More strictly, the law is stated as
a hypothesis or assumption, which comprises many experiences,
which is not contradictéd by any experience, but which asserts
more than can be proved by definite experience at the present
time. For, as regards their relation to the fundamental law,
the material systems of nature can be divided into three classes.

316. 1. The first class comprises those systems of bodies
or parts of such systems which satisfy the conditions of a
free system, as can be immediately seen from experience, and
to which the fundamental law applies directly. Such are, for
example, rigid bodies moving in free space or perfect fluids
moving in closed vessels.

The fundamental law is deduced from experiences on such
material systems. With regard to this first class it merely
represents an experiential fact.

317. 2. The second class comprises those systems of
bodies which do not immediately conform to the assumptions of
L
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the fundamental law, or which do not at first sight obey the
law, but which can be adapted to the assumptions or can be
made to obey the law when, and in fact only when, to direct
sensible experience certain definite hypotheses as to the nature
of this experience are adjoined.

(2) Amongst these are included, firstly, those systems which
do not seem to satisfy the condition of continuity in particular
positions ; 4.e. those systems in which impulses, in the widest
meaning of the term, occur. In this case it is sufficient to
use the exceedingly probable hypothesis that all discontinuities
are only apparent and vanish when we succeed in taking into
consideration sufficiently small space- and time-quantities.

(b) Secondly, there are included amongst them those
systems in which actions-at-a-distance, the forces due to heat
and other causes of motion, not always fully understood, are in
operation. When we bring to rest the tangible bodies of
such systems, they do not remain in this state, but on being
set free enter into a state of motion again. Thus, apparently,
they do not obey the law. In this case it is highly probable
that the tangible bodies are not the only masses, nor their
visible motions the only motions of these systems, but that
when we have reduced the visible motions of the tangible
bodies to rest, other concealed motions still exist in the
systems which are communicated to the tangible bodies
again when we set them free. It appears that assumptions can
always be made with regard to these concealed motions such
that the complete systems obey the fundamental law.

As regards the second class of natural systems the law
bears the character of a hypothesis which is in part highly
probable, in part fairly probable, but which, as far as we can
see, is always permissible.

318. 3. The third class of systems of bodies comprises
those systems whose motions cannot be represented directly
as necessary consequences of the law, and for which no definite
hypotheses can be adduced to make them conformable to it.
Amongst these are included, for instance, all systems which
contain organic or living beings. 'We know, however, so little
of all the systems included under this head, that it cannot
be regarded as proved that such hypotheses are impossible,
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and that the phenomena in these systems contradict the
fundamental law.

Thus, then, with regard to the third class of systems
of bodies the fundamental law has the character of a per-
missible hypothesis.

319. Observation. If we may assume that there is no
free system in nature which is not conformable to the law,
then we may consider any system whatever as such a free system,
or as part of such a free system ; so that, on this assumption,
there is in nature no system whose motions cannot be deter-
mined by means of its connections and the fundamental law.

Limitation of the Fundamental Law

320. In a system of bodies which conforms to the funda-
mental law there is neither any new motion nor any cause of
new motion, but only the continuance of the previous motion in
a given simple manner. One can scarcely help denoting such
a material system as an inanimate or lifeless one. If we were
to extend the law to the whole of nature, as the most general
free system, and to say— The whole of nature pursues with
uniform velocity a straightest path,”—we should offend against
a feeling which is sound and natural. It is therefore prudent
to limit the probable validity of the law to inanimate systems.
This amounts to the statement that the law, applied to a
system of the third class (§ 318), forms an improbable
hypothesis.

321. No attention is, however, paid to this consideration,
nor is it necessary, seeing that the law gives a permissible
Liypothesis if not a probable one. If it could be proved
that living systems contradicted the hypothesis, then they would
separate themselves from mechanics. In that case, but only
in that case, our mechanics would require supplementing with
reference to those unfree systems which, although themselves
lifeless, are nevertheless parts of such free systems as contain
living beings.

As far as we know, such a supplement could be formed,
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namely, from the experience that animate systems never
produce any different results on inanimate ones than those
which can also be produced by an inanimate system. Thus
it is possible to substitute for any animate system an inanimate
one; this may replace the former in any particular problem
under consideration, and its specification is requisite in order
that we may reduce the given problem to a purely mechanical
one.

322. Observation. In the usual presentation of mechanics
such a reservation is omitted as superfluous and it is assumed
that the fundamental laws include animate as well as inanimate
nature. And, indeed, in that presentation it is permissible,
because we give the freest play to the forms of the forces which
there enter into the fundamental laws, and reserve to ourselves
an opportunity of explaining, later and outside of mechanics,
whether the forces of animate and inanimate nature are
different, and what properties may distinguish the one from
the other. In our presentation of the subject greater prudence
is necessary, since a considerable number of experiences
which primarily relate to inanimate nature only are already
included in the principle itself, and the possibility of a later
narrowing of the limits is much lessened.

Analysis of the Fundamental Law

323. The form in which we have stated the law pur-
posely assimilates itself to the statement of Newton’s First
Law. However, this statement comprises three others inde-
pendent of one another, namely, the following :—

1. Of the possible paths of a free system its straightest
paths are the only one which it pursues.

2. Different free systems describe in identical times lengths
of their paths proportional to each other.

3. Time, as measured by a chronometer (§ 298), increases
proportionally to the length of the path of any one of the
free moving systems.

The first two statements alone contain facts of a general
nature derived from experience. The third only justifies our
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arbitrary rule for the measure of time, and only includes the
particular experience that in certain respects a chronometer
behaves as a free system, although, strictly speaking, it is not
such.

Method of applying the Fundamental Law

324. When a given question with regard to the motion of
o material system is asked, then one of the three following
cases must necessarily arise :—

1. The question may be stated in such a manmner that
the fundamental law itself provides a definite answer. In this
case, the problem is a definite mechanical one, and the
application of the fundamental law gives its solution.

325. 2. The question may be stated in such a manner
that the fundamental law itself- does not directly furnish a
definite reply, but one or more assumptions may be joined with
the question by means of which the definite application of the
law is rendered possible.

If only one such assumption is possible and we assume
that the problem is a mechanical one, this assumption must also
be an appropriate one; the problem can thus be considered as
a definite mechanical one, and the application of the assump-
tion and the fundamental law gives the solution.

If several assumptions are possible and we assume' that the
problem is & mechanical one, one of these assumptions must
be appropriate; the problem may then be considered as an
indeterminate mechanical one, and the application of the
fundamental law to the different possible assumptions gives the
possible solutions.

326. 3. The question may be stated in such wise that
the fundamental law is insufficient for the solution and that
no assumption may be joined to it such as to render the appli-
cation of the law possible. In this case the question must
contain assumptions contradicting the fundamental law or the
properties of the system to which it relates; the proposition
stated cannot then be considered a mechanical problem.
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Approximate Application of the Fundamental Law

327. Note. When equations result from the given equa-
tions of condition of a system and the fundamental law, which
have strictly the form of equations of condition, then for the
determination of the motion of the system it is indifferent
whether we consider the original equations alone, or instead
of them the derived equations, as a representation of the con-
nections of the system.

For if we omit from the series of original equations of
condition all those which may be obtained analytically from
the remainder and from the derived equations of condition,
then only possible displacements, although in general not all
the displacements which were possible according to the original
equations, satisfy those of the original equations which are left
and the derived equations. A path which was a straightest
path under the original more general manifold will be one
also @ fortiori under the present more limited manifold. And
since the natural paths must be included under this more
limited manifold, the natural paths are the straightest amongst
those which are possible by the present equations of condition.
Thus the proof follows.

328. Corollary 1. If we know from experience that a
system actually satisfies given equations of condition, then in
applying the fundamental law it is quite indifferent whether
these connections are original ones, i.e. whether they do not
admit of a further physical explanation (§ 313), or whether
they are connections which may be represented as necessary
consequences of other connections and of the fundamental law,
and which consequently admit of a mechanical explanation.

329. Oorollary 2. If we know from experience that
given equations of condition of a material system are only
approximately but not completely satisfied, then it is still
permissible to leave those equations of condition as an approxi-
mate representation of a true connection, and by applying the
fundamental law to them to obtain approximate statements
concerning the motion of the system, although it is quite
certain that these approximate equations of condition do not
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represent an original, continuous and normal connection, but
can only be regarded as the approximate result of unknown
connections and the fundamental law.

330. Observation. Every practical application of our
mechanics is founded upon the foregoing corollary. For in
all connections between sensible masses which physics discovers
and mechanics uses, a sufficiently close investigation shows
that they have only approximate validity, and therefore can only
be derived connections. We are compelled to seek the ultimate
connections in the world of atoms, and they are unknown to
us. But even if they were known to us we could not apply
them to practical purposes, but should have to proceed as we now
do. For the complete control over any problem always requires
that the number of variables should be extremely small,
whereas a return to the connections amongst the atoms would
require the introduction of an immense number of variables.

However, the fact that we may employ the fundamental
law in the manner we do, is not to be regarded as a new
experience in addition to the law, but is, as we have seen, a
necessary consequence of the law itself.



CHAPTER III
MOTION OF FREE SYSTEMS

General Properties of the Motion
1, Determinateness of the Motion

331. Proposition. A natural motion of a free system is
singly determined when the position and velocity of the system
at any given time are known.

For the path of the system is singly determined (§ 161)
by its position and the direction of its velocity ; the constant
velocity of the system in its path is given by the magnitude
of the velocity at the initial time.

332. CQorollary 1. The future and past conditions of a
free system for all times are singly determined by its present
condition (§ 261).

333. Oorollary 2. If it were possible to reverse the
velocity of a system in any position (a thing which would in no
wise contravene the equations of condition of the system),
then the system would pass through the positions of its former
motion in reverse order.

334. Note 1. In a free holonomous system (§ 123) there
is always a natural motion which carries the system in a given
time from an arbitrarily given initial position to an arbitrarily
given final one.

For a natural path is always possible between the two
positions (§ 192). Any velocity is permissible in this path,
and therefore such an one as makes the system traverse the
given distance in the given time.



CHAP. III GENERAL PROPERTIES OF MOTION 153

335. Observation. The foregoing note still holds when
instead of the time of the transference the velocity of the
system in its path or its energy is given. |

336. Note 2. A free system which is not holonomous
cannot be carried from every possible initial position to every
possible final one by a natural motion (§ 162).

337. Proposition. A natural motion of a free holo-
nomous system is determined by specifying two positions of
the system at two given times.

For by these data the path of the system and its velocity
in the path are determined.

338. Observation 1. The determination of a natural
motion by means of two positions between which it takes place
is in general not unique; it is unique so long as the distance
between the two positions does not exceed a certain finite
quantity and the length of the path described is of the order
of this distance (cf. §§ 167, 172, 190, 176).

339. Observation 2. A natural motion of a free holo-
nomous system, apart from the absolute value of the time, is
also determined by two positions of the system and either the
duration of the transference, or the velocity of the system in
its path, or the energy of the system.

2. Conservation of Energy

340. Proposition. The energy of a free system in any
motion does not change with the time.

For the energy (§ 282) is determined by the mass of the
system, which is invariable, and the velocity in its path,
which is also invariable.

341. Observation 1. Of the three partial statements
into which the fundamental law can be subdivided (§ 323),
only the second and third are needed for the proof of the
proposition, 'We might also make the third unnecessary and
render the proposition independent of any given method of
measuring time by stating it in the form :—
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The ratio of the energies of any two free sysbems in any
motion does not change with the time.

342. Observation 2. The law of the conservation of
energy is a necessary consequence of the fundamental law.
Conversely, from the law of the conservation of energy the
second partial statement (§ 323) of that law follows, but not
the first, and consequently not the entire law. There might
be free systems conceivable, for which the law of the conser-
vation of energy held, and which nevertheless did not move in
straightest paths. It is conceivable, for instance, that the law
of the conservation of energy might also hold good for ani-
mated systems although these might not be embraced in our
mechanics. Conversely, natural systems might be conceived
- which only moved in straightest paths, and for which never-

theless the law of the conservation of energy might not
hold good.

343. Observation 3. Lately the opinion has been re-
peatedly expressed that the energy of a moving system is
associated with a definite place and is propagated from place to
place. On this account energy, in this respect as well as in
respect to its indestructibility, has been compared with matter.
This conception of energy is obviously very different from
that implied in our method of treatment. We have no stronger
reason for saying that the seat of the energy of a moving
gystem is where the system is, than for saying that the seat
of the velocity of a moving body is where the body is. But
naturally this last mode of expression is never used.

3. Least Acceleration

344. Proposition. A free system moves in such a
manner that the magnitude of its acceleration at any instant
is the smallest which is consistent with the instantaneous
position, the instantaneous velocity and the connections of the
system.

For the square of the magnitude of the acceleration is by
§§ 280, 281, equal to

‘ A2 4 2.
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Now for the natural motion ¥ =o0; » has a value given by
the instantaneous velocity, and ¢ has the least value which is .
consistent with the given direction of motion and the connec-
tions of the system. Hence the expression itself must take
the smallest value consistent with the given circumstances.

345. Observation 1. The property of the natural motion
stated in the above proposition determines this motion uniquely,
and therefore the proposition can completely replace the funda-
mental law.

For if the expression v'*+ %% is to become a minimum,
firstly ¥ must be zero, and consequently the system must traverse
its path with constant velocity; secondly either » must be
zero, in which case the system is at rest, or ¢ must have
the smallest value possible for the direction of the path, in
which case the path is a straightest path.

346. Observation 2. Proposition 344 might be regarded
as a preferable form of statement of the fundamental law, inas-
much as it condenses the law into a single indivisible statement,
not only externally into one sentence. The chosen form, how-
ever, has the advantage of making its meaning clearer and
more unmistakable,

4 Shortest Path

347. Proposition. The natural path of a free holo-
nomous systemm between any two sufficiently near positions
is shorter than any other possible path between the two
positions,

For in a holonomous system a straightest path between
any two sufficiently near positions is also a shortest one

@&§ 190, 176).

348. Observation 1. If the restriction to sufficiently
near positions is removed, then it can no longer be asserted that
the natural path is shorter than all other paths, nor even that
it is shorter than all neighbouring paths. However, the asser-
tion contained in the foregoing proposition, that the variation of
the length of the path vanishes in a transference to any neigh-
bouring possible path, always holds (§§ 190, 171).
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349. Observation 2. The foregoing proposition corresponds
to the Principle of Least Action in the form given to it by Jacobi.
If for the moment we take m, to be the mass, ds, the path-
length described by the »* of the n points of the system in a
given element of time, then the proposition asserts that the
variation of the integral

fom

vanishes in the natural motion of the system, and this is
Jacobi’s form of that principle.

350. Observation 8, In order to establish more strictly
the relation between the proposition of § 347 and Jacobi's
Law, it is necessary to make the following statement :—Accord-
ing to the usual conception of mechanics the proposition con-
tains a particular case of Jacobi’s Law, viz.,, the case where no
forces act. -

Conversely, according to our conception, the assumptions
of the complete Law of Jacobi are to be considered as less
general.  According to this conception Jacobi's Law is an
adaptation of the proposition to particular relations and a
modification of it to the assumptions in them.

351. Observation 4. The law of the conservation of
energy is not postulated by the proposition of § 347, nor is
the latter deduced from the law; they are quite independent
of one another. In conjunction with the law of energy
the proposition may completely replace the fundamental law,
but only for holonomous systems. If the proposition were
applied to other systems, it would certainly determine
definite motions; but these motions would contradict the
fundamental law (§ 194) and would consequently furnish false
solutions of the stated mechanical problem.

6. Shortest Time

352. Proposition. The natural motion of a free holono-
mous system carries the system in a shorter time from a given
initial position to a sufficiently near final one, than could be
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done with any other possible motion, with the same constant
value of the energy.

For if the energy, and consequently the velocity in the
path, are the same for all the motions compared, then the
duration of the motion is proportional to the length of the
path. Consequently it is the smallest for the shortest path,
that is for the natural path.

353. Observation. If the restriction to sufficiently near
positions is removed, then the time of the motion is no longer
necessarily a minimum, but it still retains the property of always
being equal for the natural path and for all its infinitely near
possible paths (see § 348).

354. Qorollary 1. For the natural motion of a free
holonomous system between given sufficiently near final
positions, the time-integral of the energy is always smaller than
for any other possible motion performed with the same constant
value of the energy.

For the time-integral is equal to the product of the given
constant value of the energy and the duration of the transference.

355. Observation 1. The proposition of § 352, particu-
larly in the form of § 354, contains Maupertuis’ Principle of
Least Action. If it is desired to establish more strictly its
relation to this principle, we must express ourselves in the
manner done in § 350.

356. Observation 2. The corollary § 354, and also the
proposition § 352, assume for the motions compared with one
another the constancy of the energy with the time. With the
assumption that the natural motion is included in those com-
pared, they are sufficient for its determination, and could replace
the fundamental law, but only in the case of holonomous
systems. Their assumptions applied to other systems would
lead to false mechanical solutions.

357. Corollary 2, A free holonomous system is carried
from its initial position in a given time through a greater
straightest distance by its natural motion than by any other
possible motion which takes place with the same constant
value of the energy as the natural motion.
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6. Least Time-Integral of the Energy

358. Proposition. The time-integral of the energy in the
transference of a free holonomous system from a given initial
position to a sufficiently near final one is smaller for the natural
motion than for any other possible motion by which the system
may pass from the given initial position to the final one in an
equal time.

For firstly, if we compare only motions in one and the same
path, of length §, then the time-integral attains its minimum
value for that one in which the velocity v is constant. For
since the sum of the quantities »d? has the given value S, then
the sum of the quantities +?d¢ will attain its smallest value
only when all the v’s are equal. But if the velocity is constant,
then the time-integral of the energy is equal to mS?/T, where T
is the duration of the transference. Since T is given, the time-
integral of the energy for different paths of the system varies
as the square of the length of the path; hence the first quantity,
like the last, has its minimum value for the natural path.

359. Observation 1. If the limitation to sufficiently near
positions is removed, then the time-integral of the energy will
no longer necessarily be a minimum, but its variation, never-
theless, always vanishes in the transference to any other of the
motions considered (¢f. § 348).

360. Observation 2. The foregoing proposition corre-
sponds to Hamilton’s Principle. If it is desired to establish
more closely its connection with this principle, we must use the
mode of expression of § 300.

361. Observation 8. The proposition § 358 and the
corollary § 354 agree in this, that amongst certain classes of
possible motions they distinguish the natural motion by one
and the same characteristic, viz,, the minimum value of the
time-integral of the energy. They differ essentially from one
another in this, that they consider entirely different kinds of
possible motions.

362. Observation 4 The law of the conservation of
energy is a necessary consequence of the proposition in § 358 ;
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and this proposition, employed as a principle, can therefore
completely replace the fundamental law, but still only in its
application to holonomous systems. If the restriction to
holonomous systems is removed, then the proposition deter-
mines definite motions of the material systems; but these in
general contradict the fundamental law, and are, therefore,
mechanically considered, false solutions of the stated problem.

363. Retrospect to §§ 347-362. If we employ the pro-
perties of the natural motion stated in the propositions 347,
352, 354, and 358 as principles for the complete or partial
determination of this motion, then we make the changes now
entering into the condition of the system dependent on such
peculiarities of the motion as can only appear in the future,
and which often seem in human affairs as objects worth striv-
ing for. This circumstance has occasionally led physicists
and philosophers to perceive in the laws of mechanics the .
expression of a conscious intention as to future aims, combined
with a certain foresight as to the most suitable means for attain-
ing them. Such a conception is, however, neither necessary
nor permissible.

364. That such a conception of these principles is not
necessary is shown by the fact that the properties of the
natural motion which seem to indicate an intention can be
recognised as the necessary consequences of a law in which
one finds no expression of any intention as to the future.

365. That this conception of the principles is inadmis-
sible is seen from the fact that the properties of the natural
motion which appear to denote an outlook to future issues
are not found in all natural motions. Had nature the design
of aiming at a shortest path, a least expenditure of energy and
a shortest time, it would be impossible to understand why
there could be systems in which this design, although attain-
able, should still be regularly missed by nature.

366. If one wishes to recognise in the fact that a system
always chooses a straightest path-element amongst all possible
ones the expression of a definite intention, then this is
allowable ; the expression of a definite intention is then already
seen in the fact that a natural system always chooses out
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of all possible motions no arbitrary one, but always one which
is determinable beforehand and is marked by particular charac-
teristics.

Analytical Representations. Differential Equations of
Motion

367. Explanation. By the differential equations of
motion of a system we understand a set of differential
equations in which the time is the independent variable, the
coordinates of the system the dependent variables ; and which,
together with an initial position and initial velocity, uniquely
determine the motion of the system (§ 331).

368. Problem 1. To express the differential equations
of the motion of a free system in terms of its rectangular
coordinates.

In § 155 (iv) we have found the differential equations of
the straightest paths of the system in terms of the rectangular
coordinates. In these equations we introduce the time ¢ as
independent variable instead of the length of the path. By the
fundamental law, cLs/dt:v is independent of ¢, and conse-
quently also of s. Thus we have

&,=0,.v, B=a",.0%
We then multiply the equations 155 (iv) by mu? and put for
shortness X, instead of mv*E,. We thus obtain as solution of
the problem the 37z equations

i
mi, + D, X, =0 @),
1
which with the ¢ equations (¢f. § 155 ii.)
n Sn Snar
ﬁv a)“,l':',-l-zvzu;"".l},,i“ =0 (ii)
1 171 al’“

determine the 3z quantities £, and X, as single-valued functions
of z, and &,

369. Observation1. The equations of motion of the free
system in the form of § 368 are usually known as Lagrange’s
equations of the first form.
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370. Observation 2. Every single equation of § 368 (i)
gives us, after having first determined the quantities X,, the
component of the acceleration of the system along one of the
rectangular coordinates of the system.

371. Problem 2. To express the differential equations of
motion of a free system in terms of its general coordinates p,.

The differential equations of the straightest paths in terms
of p, are given in § 158 (iv). In these we introduce the
time as independent variable instead of the length of the
path ; and we again note that according to the fundamental law.

pp = P,p”» ﬁp =p”pvz'
We consequently multiply the equations § 158 (iv) by m?,

and putting P, for mv*II, we obtain as solution of the problem
the r equations

L T /d 2\, . ; .
] Srautt 3o 3G - 45z o |+ Sk =0 0
1\ op, Po 1

1 1

which with the % equations (¢f. § 158 (ii))

r r r
Shrybot 2p ST p, =0 ()
1 1 1 (4

determine the 7+ % quantities §, and P, as single-valued
functions of p, and 7,

372. Observation. If we make use of the notation of
§ 277 we can write the equations of motion of § 371 (i)

in the form
k

mf, + 1x Pbx=0.

If we assume that the quantities P, have been determined,
each of these equations gives us the component of the accelera-
tion along a given coordinate p, expressed as a function of the
instantaneous position and velocity of the system.

373. Oorollary 1. If we express by using the notation
of § 291 (i) the components of the acceleration in terms of the
energy, then the equations of motion of a free system take the

form
M
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d a,,E> E <
A=) -+ X P =0.
al )" %, + 2

374. Observation 1. The differential equations of motion
in this form are called also the generalised Lagrangian equa-
tions of motion or Lagrange’s equations of the second form

(. § 369).

375. Observation 2. If the coordinate p, is a free co-
ordinate, then it does not appear in the equations of condition
of the system, and the quantities p,, are consequently all equal
to zero. The equation of motion corresponding to p, then

becomes
4(0E) OE
dt\ 9p, e
In a holonomous system all the equations of motion can
be expressed in this simple form (§ 144).

376. Oorollary 2. The equations of motion of a free
holonomous system expressed in any r free coordinates p,
of the system can be written in the form of the 27 equations

=2 i
% 0P, @
. oFE ..
%= ap;' (i).

Of these the former contain only definitions; but the latter
contain experiential facts. One can thus regard the equations
of motion in this form as 2r differential equations of the first
order for the 27 quantities p, and ¢,. These equations, together
with the 27 initial values of the quantities, determine them for
all times.

377. Observation 1. The equations 376 (i) and (ii) one:
might correctly term Poisson’s form of the equations of motion.

378. Observation 2. From the equations § 376 there
follow two reciprocal relations, analytically expressed by the
equations

[from (ii)] Z—;f - aa’% @
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. .. ) 0.9 ..

from (i) and (ii b o P i),

[fom () snd (@] ke~ (i)
and which possess a simple physical meaning. Both relations
contain elements of experience and would not hold for every
possible motion of the system. Hence they may, under
certain conditions, be utilised for testing the fundamental law.
A third analogous relation, deduced solely from § 376 (i),
would only be a consequence of our definitions.

379. Oorollary 3. The equations of motion of a free
holonomous system in terms of any » free coordinates p, of

the system can be written in the form of the 27 equations
(8§ 290, 289, 292, 375)

)

e o)
()

- -7 ().

Of these the former contain only definitions; but the latter
contain experiential facts. In this form also the equations
of motion appear as 2r differential equations of the first order
for the 2r quantities p, and ¢, These equations, together
with the 27 initial values of the quantities, determine them
for all times.

380. Observation 1. The foregoing equations are usually
known as the Hamiltonian form of the equations of motion
for a free system.

381. Observation 2. Two reciprocal relations follow from
the equations § 379, which are analytically expressed by the
equations

aﬂp 3,,q', :
i L] gy L 1
Op, op, ®
o.p 94,

Zaflp _ _ Zdde s
) 2, F) 0, (ii),

and which possess a simple physical meaning. Both relations
contain elements of experience and distinguish the natural motion
from other possible motions. Hence they may conversely,
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under certain conditions, be utilised for testing the fundamental
law. A third analogous relation, deduced solely from § 379 (i),
would only be the consequence of our definitions, and would
therefore have no mechanical significance.

It is necessary to insist on the fact that the equations
378 (i) and 381 (i) represent different statements, and not
the same statements in a different form.

Internal Oonstraint of Systems

382. Proposition. A system of material points between
which no connections exist, persists in its condition of rest or
uniform motion in a straight path.

For in such a system the straight path is also the
straightest.

383. COorollary 1. A free material point persists in its
condition of rest or uniform motion in a straight path (Galileo’s
Law of Inertia or Newton’s First Law).

384. Oorollary 2. The acceleration of a system of
material points between which no connections exist is zero.
The connections between the points of a material system can
thus be regarded as the cause owing to which the acceleration
differs in general from zero.

385. Deflnition. The change in the acceleration caused
by all the connections of a material system is called the
constraint which the connections impose on the system; this
change is also called for shortness the internal constraint, or,
still shorter, the constraint of the system.

The constraint is measured by the difference between the
actual acceleration of the system and the acceleration of that
natural motion which would result on removal of all the equa-
tions of condition of the system; it is equal to the former
diminished by the latter.

386. Oorollary 1. The internal constraint of a system is,
like the acceleration, a vector quantity with regard to the system.

387. Oorollary 2. In a free system the internal con-
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straint is equal to the acceleration of the system: it is here in
fact only another mode of regarding the acceleration (§ 382).

388. Proposition 1. The magnitude of the constraint
is at every instant smaller for the natural motion of a free
system than for any other possible motion which coincides
with it in position and velocity at the particular. instant con-
sidered.

For this statement is by § 387 only different in form
from proposition § 344.

389. Oorollary. Any connection which is added to the
connections of the system already in existence increases the
constraint of the system. The removal of any connection
changes the natural motion in such a manner that the con-
straint is diminished.

390. Observation 1. The foregoing theorem corresponds
to Gauss’s Principle of Least Constraint. In order to present
clearly its connection with this principle we should bave to
use the same mode of expression as in § 350.

391. Observation 2. Gauss’s Principle and the Law of
Inertia (§ 383) may together replace completely the funda-
mental principle, and that for all systems.

For they together are equivalent to the proposition § 344.

392. Proposition 2. The direction of the constraint in
the natural motion of a free system is constantly perpendicular
to every possible or virtual (§ 111) displacement of the system
from its instantaneous position.

For the components of the constraint in a free system
along the coordinates p, are by § 387 equal to J/,, and may thus
be written in the form

1 k
. ._.mzlx Pxpr‘
Thus by § 250 they are perpendicular to every possible dis-
placement of the system.

393. Symbolical Expression. If we denote by &p, the
changes of the coordinates p, for any possible or virtual dis-
placement of the system, then the equation
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fopsl’p =0 (@)

furnishes a symbolical expression of the foregoing proposition.
For the equation replaces the proposition by § 249, and it is
symbolical, since it stands as a symbol for an infinite number
of equations.

If we use rectangular coordinates and denote by &z, the
change of z, for any possible or virtual displacement, then the
equation takes the form

3n
pmide, =0 ().
1

394. Observation 1. The foregoing proposition, § 392,
corresponds to d’Alembert’s Principle; the equations 393 (i)
and (ii) correspond to the usual expression of that principle.
In order to establish clearly the relation between that principle
and the proposition we should have to use the same mode
of expression as in § 350.

395. Observation 2. From the condition that the con-
straint is perpendicular to every virtual displacement of the
system we get by § 250 the equations of motion of the free
system in the form § 372. Consequently d’Alembert’s Prin-
ciple can by itself replace the fundamental law, and that for
all systems. Our fundamental law has over d’Alembert’s
Principle the advantage of a simpler and clearer meaning.

396. Oorollary 1. In a free system the acceleration is
always perpendicular to any possible displacement of the
system from its instantaneous position.

397. Corollary 2. In the motion of a free system the
acceleration is always perpendicular to the direction of the
actual instantaneous motion.

398. Oorollary 3. In the motion of a free system the
component of the acceleration in any direction of a possible
motion is always zero.

399. Corollary 4. The component of the acceleration of
a free system in the direction of any free coordinate is always
equal to zero.
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400. Proposition. A free system moves in such a
manner that the components of the acceleration in the direction
of any coordinate of absolute position always remain zero,
whatever is the internal connection between the points of the
system.

For whatever is the connection of the system, every co-
ordinate of its absolute position is a free coordinate (§ 142).

401. Oorollary. If we choose the coordinates of a free
systém in all other respects arbitrarily, but so that there are
amongst them six coordinates of absolute position (§ 19), we
can without knowledge of the connection of the system, or
without complete knowledge of it, write down immediately six
differential equations of the motion of the system.

402. Particular Selection of Coordinates. The follow-
ing choice of coordinates of absolute position is permissible
for every system.

We denote by

a,, a,» @,

the arithmetic mean value of those rectangular coordinates of
all particles which are respectively parallel to 22z, The
quantities a,a,a, We consider as rectangular coordinates of
a point of mean position, which™we call the centre of gravity
of the system. Through the centre of gravity we draw three
straight lines parallel to the three coordinate axes. Through
these three straight lines and all the particles we draw planes
and denote by

Wy, W, 0,

the arithmetic mean value of the inclinations of all the planes
drawn through these straight lines to any one of them. The
six quantities @ and w are variable quantities independent of
each other, whose change necessarily causes a change in the
position of the system, and which are not determined by the
configuration alone. We can consequently make these six
quantities coordinates of absolute position (§ 21), and we make
them coordinates of absolute position so long as we introduce
only coordinates of configuration for the remaining coordinates.

If we give a and o any changes whilst we fix the
remaining coordinates, the system moves as a rigid body.
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We obtain then from purely geometrical considerations for
the changes of the rectangular coordinates, when we allow the
index v to pass from 1 to n (§ 13),

dz,, =da;+ (T, — ag)dwy — (T5,_y — ag)dw,

dzg, 1 =dag+ (Z5,_3 — a)dw, — (25, —ay)de,  (i).

Azy,_g=dag+ (25, —a))dwy—(25,_) — ay)dw,

From this we can obtain, ‘when we consider the z,’s as functions
of all the coordinates, the values of the partial differential co-
efficients of the z,’s with respect to a and w ; thus, for instance,

asz ax!v ax&r 22
$=1, _a;=0, aaa:o (ll),
o,  On,

_ Ozy _
i T e e e

403. Oorollary 1. As a consequence of the remark that
the accelerations of the system along the coordinates a,, a,, a,
must vanish (§ 400), we get the three equations

L ” n

Evmﬁ,_ = O, Z-mﬁ&_l = 0, z,m,’é,,_, = 0.

1 1 1
For by § 242 and § 275 the acceleration along the co-
ordinate a, of the centre of gravity is equal to
Yow, m,,
2, 2,

10a, m
therefore by § 402 (ii) equal to
nmv“
Zv_%v’
i m
and similar expressions hold for the accelerations along a,
and a,

404. Observation. The three equations § 403 can be
immediately integrated twice and then express that the centre
of gravity of a free system moves uniformly and in a straight
line. This is known as the Principle of the Centre of Gravity.

405. Oorollary 2. From the fact that the accelerations
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of the system along the coordinates ®,, w, @, must vanish
(§ 400), we get the three equations

n
21'7"’ (Bgy- g1 = Tgy - Eyp-p) = 0
Z'Mv(xav gy = Ly-gly )=0
1

m, -, ¥, )=0.
2oy s

For by § 242 and § 275 the acceleration along w, is
equal to

J Yoz, m,,

O, m”

thus by § 402 (iii) equal to

»
21';'{(”9-2_”'3)”9 1~ @gon “2)xsv-z}’

then by using § 403 equal to
2 ( 3v— 3v -1= 3v-l ..)’

and corresponding values hold for the accelerations along w,
and o,

406. Observation. These three equations contain the so-
called Principle of Areas. These equations can be immediately
integrated once, and then give the differential equations of the
first order

n

z'm-(”v-fisv- ar-l 8- a) const,
1
»

zvm,(:vv By g = Fyy g, )= coDSH,
1

b

2: M (X 1y, —y, &, ;) = const.
1

These admit of the following geometrical interpretation which
suggests the name :—
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Draw to each particle of the system from the origin a
radius vector; then the sum of the projections of the areas
described by these radii on each of the three coordinate planes
increases uniformly with the time.

407. Observation 1 (on {§ 402-406). We have introduced
the Principles of the Centre of Gravity and of Areas as
particular cases of the general proposition § 400. We should
not have been right in this, if we regarded, as is sometimes
done, the essential features of these principles as lying in the
fact that they furnish integrals of the equations of motion.
One reason why this view seems to us inadmissible, is that the
result derived from the Principle of Areas can only be called
an integral in a figurative sense. We rather consider the
essential features of the principles as lying in the fact that
they furnish properties which are of general validity and can
be stated quite independently of the particular connection of
the system.

408.  Observation 2 (on §§ 402-406). In deducing the
Principles of the Centre of Gravity and of Areas as special
cases of § 400 we have not made use of all the properties
which the definitions assigned to @ and w. In fact, we might
have been able to deduce these principles by using other
coordinates, for instance, all coordinates which are in the
same direction as a and o without being identical with
them. Of course, with any choice of coordinates, we should
not obtain in every case six equations which would furnish a
new physical meaning, or which would be quite independent of
the equations § 403 and § 405 ; but they would always be
those equations which result from the equations § 403 and
§ 405 by transformation to the chosen coordinates. But the
proposition § 400 gives for all these different forms a common
expression and physical meaning.

Holonomous 8ystems

409. Note. If the straightest distance (§ 217) is known
for a holonomous system, then the equations of the straightest
paths can be expressed in a finite form (§ 225). These paths,
moreover, are the natural paths of the system, so long as it is
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free; and all motions by which they could be traversed with a
constant velocity, are natural motions of the system. The
equations of motion of a free holonomous system can thus be
expressed in a finite form.

410. Problem. To express the equations of motion of a
free holonomous system by means of its straightest distance.

As before, let S be the straightest distance of the system,
considered as a function of the free coordinates p,, and p, of
its initial and final positions. Let ¢, be the time at which the
system passes through the initial position, and #, the time at
which it passes through the final position. Then ¢, —¢, is the
duration of the motion, and thus

S .
= —t, ®

gives the constant velocity of the system in its path; its
energy is given by

E St (i)
= —— 1),
(tl - tq))2
and its momenta ¢, and ¢, at the times ¢, and ¢, by
S A
Qoo = mzl—_t;dam COS 8P,
(iid).

S A
9= mttho N @y COS 8P,

For the equations of the straightest paths we find two
forms in the equations § 224 (i) and § 226 (i). If we mul-
tiply these by m/S(¢, —¢,), or, what is the same thing (ii), by
~/2mE, we obtain the four following sets of » equations—

m 082

= — = iv
95 irtl o @iv)
m 0S?
Gpo= — .~ v
— 028
= 2mE— (i
Qpl “m appl )
_._0S ..
9= = ~/ 2mE— (vu)°
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Thus our problem is solved in a variety of ways.

For if we consider ¢, as the variable time, and consequently
D, 88 the coordinates of the position changing with this time, the
r equations (v) determine these » coordinates as finite functions
of ¢, and the equations (vii) give us the same result if we
associate with them the relation between E and ¢, i.e. the
equation (ii). The 27 quantities p, and g,, behave here as 27
arbitrary constants. From similar considerations the equations
(iv), or (vi) and (ii), give us the equations of motion of the
system ; these are now in the form of differential equations of
the first order, in which the r quantities p, behave as »
arbitrary constants.

Or, if we consider, as is equally permissible, the time ¢, as
the variable time, and thus the position 0 as the variable position,
the equations (iv), or (vi) and (ii), give us the equations of
motion in a finite form, with the time ¢, as independent, the
quantities p,, as dependent variables, and the quantities p,, and
g, a8 27 arbitrary constants. Thus, again, the equations (v),
or (vii) and (ii), give the equations of motion in the form of
differential equations of the first order, in which p,, behave as
r arbitrary constants.

411. Oorollary 1. If we put
V2Em.8=V @),

and consider V as a function of p,, p, and E, then the natural
motions of the system can be expressed in the form

ov ..
9= % (i)
ov
Qo= — ép—m' (lll)
ov .
L—t,= 5 @iv).

For the equations (ii) and (iii) coincide with the equations
§ 410 (vi) and (vii), and the equation (iv) follows from the
equation (i) and § 410 (ii).

412. Obgervation. The function V here introduced is
Hamilton’s Characteristic Function of the System; Hamilton
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denotes it by the same symbol. Such a function, therefore,
only exists for holonomous systems. Its mechanical meaning
is this. Suppose that the system moves with given energy
from a given initial to a given final position: then the char-
acteristic function gives twice the value of that time-integral
of the energy which results, considered as a function of that
energy and of the coordinates of the initial and final positions.
For by equations 411 (i) and 410 (ii)

V= 2E(t1 - o)

in value, but in form only when, on the right-hand side, we
regard the duration of the motion ¢, — £, expressed as a function
of E, p, and p,,

413. Proposition. The characteristic function V of a
free holonomous system satisfies the following two partial
differential equations of the first order—

1w~ , oV av
> Deb ,— — =E
27"21 21 nlappl P

For they are obtained by multiplying the equations § 227
for the straightest distance by 2mE, and using equation
§ 411 ().

414. Oorollary 2. If we put

mS?
_mS _p i),
2(t, —¢t,) @
and regard P as a function of p,, p,, ¢, and ¢,, the equations
opP .
h = — 1
pl ap’l ( )
oP
Go= — 5> (i)
P,

represent the natural motions of the system. The energy E
of the system can be immediately obtained from P by means
of the equations
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E = — = (iV).

For the equations (ii) and (iii) coincide with the equations
410 (iv) and (v), and the equations (iv) follow from (i) and
g 410 (ii).

415. Observation. The function P, here introduced, is
Hamilton’s Principal Function of the System ; it is called by
Hamilton S. Such a function exists only for holonomous
systems. Its mechanical meaning is this. Suppose that the
gystem moves in & given time from a given initial to a given
final position : then the Principal Function gives that value of
the time-integral of the energy which results, considered as a
function of that time and of the initial and final values of the
coordinates.

For by equations § 414 (i) and 410 (ii)

P=E(t, —¢)
as regards its value, but as regards it form only when we
regard E, on the right-hand side, as a function of p,, p., &
and £ .

416. Proposition. The principal function of a holonomous
system satisfies the two following partial differential equations
of the first order—

v oP opr oP

1< or oP _ oP
En-zlpzlcbp “al’pl P 04
1o, o op oP
_— T b — = _
27)12:2 P700D10 0oy ot,
For these are obtained when the equations § 227 are multi-
plied by (§ 410 (ii))
_mS
2(t, — t,)?
and the relations § 414 (i) and (iv) made use of.

417. Observation on §§ 411-416. Starting from the
differential equations § 227, we were able to consider in
§§ 232-236 functions which were related to the straightest
distance and capable of replacing it in all respects analytically,
but without having the same simple geometrical meaning. In
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just the same way, starting from the differential equations
§§ 413, 416, we can arrive at functions which are related to
the characteristic and principal functions and analytically
serve the same purpose, or even offer advantages over these;
but their physical significance, on account of the mathematical
complications, becomes more and more obscure. Such functions
would be suitably denoted as Jacobi's Principal Functions
and Characteristic Functions.

It appears, moreover, that even in the characteristic and
principal functions it is only the simple idea of the straightest
distance which appears, and this, too, somewhat indistinctly;
so that the introduction of these two functions together and
in addition to the straightest distance would have but little
significance if all the systems to be considered were always,
as here, completely known and free.

Dynamical Models

418. Deflnition. A material system is said to be a
dynamical model of a second system when the connections of
the first can be expressed by such coordinates as to satisfy
the following conditions :—

(1) That the number of coordinates of the first system is
equal to the number of the second.

(2) That with a suitable arrangement of the coordinates
for both systems the same equations of condition exist.

(3) That by this arrangement of the coordinates the
expression for the magnitude of a displacement agrees in both-
systems.

Any two of the coordinates so related to one another in
the two systems are called corresponding coordinates. Corre-
sponding positions, displacements, etc., are those positions,
displacements, etc., in the two systems which involve similar
values of the corresponding coordinates and their changes.

419. Corollary 1. If one system is a model of a second,
then, conversely, the second is also a model. of the first. If
two systems are models of a third system, then each of these
systems is also a model of the other. The model of the .
model of a system is also a model of the original system.
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All systems which are models of one another are said to
be dynamically similar.

420. Oorollary 2. The property which one system pos-
sesses of being a model of another, is independent of the
choice of the coordinates of one or the other system, although
it is only clearly exhibited by a particular choice of coordinates.

421. Corollary 3. A.system is not completely deter-
mined by the fact that it is a model of a given system.
An infinite number of systems, quite different physically, can
be models of one and the same system. Any given system is
a model of an infinite number of totally different systems.

For the coordinates of the masses of the two systems
which are models of one another can be quite different in
number and can be totally different functions of the corre-
sponding coordinates.

422. Corollary 4 The models of holonomous systems
are themselves holonomous. The models of non-holonomous
systems are themselves non-holonomous.

423. Observation. In order that a holonomous system
may be a model of another, it is sufficient that both should
have such free coordinates that the expression for the magni-
tude of the displacements of both systems should be the same.

424. Proposition. If two systems, each of which is a
model of the other, have corresponding conditions at a
definite time, then they have corresponding conditions at
all times.

For by the equations of condition of a system, the ex-
pression for the magnitude of the displacement (§164) and
the initial values of the coordinates and their change (§ 332),
the course of these coordinates is determined for all times,—
this being true whatever function of these coordinates the
position of the masses of the system is.

425. Corollary 1. In order to determine beforehand the
course of the natural motion of a material system, it is
sufficient to have a model of that system. The model
may be much simpler than the system whose motion it
represents.
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426. Corollary 2, If the same quantities are corre-
sponding coordinates of a number of material systems which are
models of one another, and if these corresponding coordinates
alone are accessible to observation, then, so far as this limited
observation is concerned, all these systems are not different
from one another; they appear as like systems, however
different in reality they may be in the number and the con-
nection of their material points.

Thus it is impossible, from observation alone of the
natural motions of a free system, 7.e. without direct determina-
tion of its masses (§ 300), to obtain any wider knowledge of
the connection of the system than that one could specify a
model of the system.

427. Observation 1. If we admit generally and without
limitation that hypothetical masses (§ 301) can exist in nature
in addition to those which can be directly determined by the
balance, then it is impossible to carry our knowledge of the
connections of natural systems further than is involved in
specifying models of the actual systems. We can then, in
fact, have no knowledge as to whether the systems which we
consider in mechanics agree in any other respect with the
actual systems of nature which we intend to consider, than in
this alone,—that the one set of systems are models of the
other.

428. Observation 2. The relation of a dynamical model
to the system of which it is regarded as the model, is precisely
the same as the relation of the images which our mind forms
of things to the things themselves. For if we regard the con-
dition of the model as the representation of the condition of
the system, then the consequents of this representation, which
according to the laws of this representation must appear, are
also the representation of the consequents which must proceed
from the original object according to the laws of this original
object. The agreement between mind and nature may there-
fore be likened to the agreement between two systems which
are models of one another, and we can even account for this
agreement by assuming that the mind is capable of making
actual dynamical models of things, and of working with them.

N



CHAPTER 1V
MOTION OF UNFKEE SYSTEMS

429. Prefatory Note 1. Every unfree system we con-
ceive to be a portion of a more extended free system; from
our point of view there are no unfree systems for which this
assumption does not obtain. If, however, we wish to emphasise
this relation, we shall denote the unfree system as a partial
system, and the free system of which it forms a part, as the
complete system.

430. Prefatory Note 2. When a part of a free system is
considered an unfree system it is assumed that the rest of the
system is more or less unknown, so that an immediate appli-
cation of the fundamental law is impossible. This deficiency of
knowledge must in some way be met by special data. Such
data can be given in various ways. As it is not our purpose
to take every possible form for these data, we shall only con-
sider two forms which, in previous developments of mechanics,
have obtained special significance.

In the first form the motion of the unfree system is
denoted as guided; whilst in the second we say that the
motion is affected by forces.

I. Guided Unfree System

431. Definition. A guided motion of an unfree system
is any motion which the system performs while the other
masses of the complete system perform a determinate and
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prescribed motion. A system whose motion is guided is
called a guided system.

432. Additional Note 1. A possible motion of a guided
system is such a motion as is not inconsistent with the con-
nection of the complete system and the prescribed motion of the
other masses.

433. Additional Note 2. A natural motion of a guided
system is such a motion as forms, with the prescribed motion
of the remaining masses, a natural motion of the complete
system.

434. Problem. To represent analytically the possible
motions of a guided system.

Let the  quantities p, be the general coordinates of the
partial system considered, and the y quantities p, be any
coordinates whatever of the remaining masses of the complete
system. The 7+t quantities p, and J, are then general co-
ordinates of the complete system, and its connections are ex-
pressible by a series of equations, say % in number, of the form

T T

2Pl 2pPuby =0 ()
where p,, and also p,, may be functions both of p, and g,
If now the motion of the masses whose coordinates are y, are
determined, then the y,’s are given functions of the time. The
equations (i) are in part identically satisfied by these functions;
in part they take, on substitution of these, the form of the r

equations
r

Do Pbp+Pe=0 (i),

1
or

Do Dylp,+ Pt =0 (i),
1

which are called the equations of condition of the guided
system, and in which p,, and p,, are now functions of p, and
the time ¢ alone. All possible motions of the guided system
satisfy these equations, and all motions which satisfy them are
possible motions.
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435. Observation 1. If the guided system is holonomous,
then the differential equations (ii) and (iii) for it can De re-
placed by the same number of finite equations between the r
coordinates of the system and the time ¢ The possible
positions of a guided holonomous system can be expressed by
coordinates which are subject to no other conditions than this,
that a number of them are given functions of the time.

436. Observation 2. Thus the equations of condition of a
guided system contain in general the time, and therefore the
guided system, considered in itself, would be inconsistent
with the requirements of normality (§ 119). Conversely, we
now consider every system whose equations of condition in
the ordinary language of mechanics contain the time explicitly,
and which in our mode of expression is apparently abnormal,
as a guided system, i.e. as a system which with other unknown
masses satisfies the conditions of normality. If this assumption
is permissible, then by it the problem is reduced to a determinate
mechanical problem (§ 325). But if, owing to any particular
form of the equations of condition, this assumption is not per-
missible, then these equations of condition already involve a
contradiction to the fundamental law or its assumptions, and
no questions asked concerning the system would be mechanical
problems (§ 326).

437. Observation 3. The fundamental law is not directly
applicable to & guided system. For the idea of straightest
paths is only defined for normal connections (§ 120); and
the internal connections of the guided system are abnormal.
Some other characteristics must therefore be sought by which
the natural motions of a guided system may be distinguished
from the greater manifold of possible motions.

438. Proposition 1. A guided system, just like a free
system, moves in such a manner that the magnitude of its
acceleration is always smaller for the actual motion than
for any other motion which satisfies the equations of condition
and which, at the moment under consideration, coincides in
position and velocity with the actual motion.

For the square of the magnitude of the acceleration of the
complete system is equal to the sum of the corresponding
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quantities for the partinl system and the remaining system,
these quantities being multiplied by the masses of their
systems and divided by the mass of the complete system.
This sum, by § 344, is to be a minimum ; the second member
of the summation is supposed to be already determined and
such a function of the time as allows the sum to be a
minimum (§ 436); this minimum is then only obtained when
the first member is made a minimum.

439. Proposition 2. A guided holonomous system, just
like a free one, moves in such & manner that the time-
integral of the energy in a motion between sufficiently near
positions is smaller for the actual motion than for any other
motion which satisfies the equations of condition, and which
carries the system in the same time from the given initial to
the final position.

For the time-integral of the emergy for the complete
system is equal to the sum of the corresponding quantities for
the partial system and the remaining system. This sum is,
by § 358, to be a minimum; the second member of the
summation is supposed to be already determined and to be
such as admits of a minimum sum; this minimum is then
only obtained when the first member is made a minimum.

440. Observation 1. The two preceding propositions
contain the adaptation of articles 344 and 358 to the special
assumptions of this chapter. In the ordinary language of
mechanics their contents could be put into the following
form :—The ILaw of Least Acceleration and Hamilton’s
Principle still hold even where the equations of condition of
a system contain the time explicitly.

. 441. Observation 2. The laws of energy, of the shortest
path, and of the least time (§§ 340, 347, 352) can not be
directly adapted in a similar manner to the assumptions of a
guided system. In the ordinary language of mechanies this
statement can be put in the following form :—The Principles of
Energy and Least Action lose their validity when the equa-
tions of condition contain the time explicitly.

442. Problem. To obtain the differential equations of
motion of a guided system.
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Let, as before, m be the mass, p? the coordinates, and f,
the accelerations along p, for the guided system. Further,
let m be the mass and P, any coordinates of the remaining
material points of the complete system. Thus p, and p, may
be taken as coordinates of the complete system. The com-
ponents of the acceleration along these coordinates may be
denoted for the complete system by f’, and {’, ‘Then the
motion of the complete system is singly determined by its A
equations of condition of the form § 434 (i), and by r+t
equation of motion of the form (§ 372)

(m +m)f, + Ex P P=0 @)

h
m+m)f,+ Dxp,,P=0 (ii).

Now by hypothesis we have to regard the quantities p, as
such determined functions of the time as identically satisfy
the equations (ii), and through whose substitution the 2
equations of condition of the complete system are transformed
into the % equations of condition (§.434 (ii)) of the constrained
system. Further, by § 255 we have

(m+m),= mf, (iii).
Thus we obtain as equations to be considered the » equa-
tions of motion

k
mfy+ DxpiP =0 (iv),
1
and the % equations of condition
DePyytPe=0 (v).
1

These (r+ k) equations do not now contain any reference to
the unknown masses of the complete system; and as they are
sufficient for the unique determination of the r+ % quantities
P, and P,, they contain the solution of the stated problem.

443. Corollary 1. The differential equations of motion of
a guided system have the same form as those of a free system.
In the ordinary language of mechanics we may say that
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the validity of this form does not depend on whether the
equafions of condition contain the time or mot. The equa-
tions of motion of a guided system will therefore admit of
exactly the same transformations as those of a free system
(368 et seq.); but of course those forms which assume that all
the coordinates are free will lose their applicability.

444. Oorollary 2. A natural motion of a guided system
is singly determined by a knowledge of the position and velocity
of the system at any given time (¢f. § 331).

445. Note, In a guided, as in a free system, the con-
straint is equal to the acceleration of the system.

For if all the equations of condition of a guided system
are removed, then the material points of the system will be
free points and the acceleration of the natural motion of the
system will be zero (§ 385).

446. Proposition 1. The magnitude of the constraint at
any instant in a guided system, as in a free one, is smaller
for the natural motion than for any other possible motion
which, at the moment considered, coincides with it in position
and velocity.

The proof follows from §§ 445 and 448.

447. Proposition 2. In the natural motion of a guided
system, as in that of a free system, the direction of the
constraint is always perpendicular to every possible or virtual
displacement of the system from its instantaneous position.

This follows from §§ 445 and 442 as in § 392,

448. Observation. The two foregoing propositions contain
the adaptation of propositions 388 and 392 to the particular case
of guided systems. In the usual language of mechanics they
might be expressed in the following form :—Gauss’s Principle
of Least Constraint and d’Alembert’s Principle retain their
validity even when the equations of condition contain the
time explicitly.

449. Note. When the coordinates p, of the complete
system which appear together with p, in the equations § 434
(i) are not functions of the time, but are constant, then the
equations of condition of the guided system take the form
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r

2# PPp =0,

1

where the p 's do not contain the time. The guided system
appears in this case as a normal one, but it does not necessarily
cease to be an unfree system. For p,, may be functions of
the absolute position, whilst in the equations of condition of a
free system they are independent of the absolute position.

In such guided, but nevertheless normal systems, the idea
of the straightest path retains its applicability. It also
follows that the fundamental law is immediately applicable to
such systems; and all the propositions which have been proved
for the motion of a free system also hold good for such
systems, excepting. only those which refer to absolute position,
1.e. excepting only proposition 400 and its corollaries.

IL Systems acted on by Forces

450. Definition. Two material systems are said to be
directly coupled (gekoppelt) when one or more coordinates of
the one are always equal to one or more coordinates of the
other. Two systems will be simply said to be coupled when
their coordinates can be so chosen that the systems become
directly coupled. Coupled systems which are not directly
coupled are said to be indirectly coupled.

451. Oorollary 1. The coupling of two systems is a
relation between them which is independent of our choice, and
in particular independent of the choice of coordinates. But
whether an existing coupling is direct or indirect does depend
on the choice of coordinates, and is thus a question for our
arbitrary determination.

452. Corollary 2. Every coupling which exists between
two systems can be made direct by a proper choice of co-
ordinates. 'When the contrary is not definitely expressed, we
shall hereafter assume that this has been done. The coor-
dinates of the coupled systems which are always equal we
shall denote as their common coordinates.

453. Corollary 3. Each of two coupled systems is
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necessarily an unfree system ; but both together, or with other
systems with which they are coupled, form a free system.
When the contrary is not expressly stated it will be assumed
in what follows that there is no coupling with more systems,
so that the two coupled systems together form a free
system.

454. Analytical Representation. Let p, be the co-
ordinates of the one, p, of the other system; then a coupling
between the two systems is expressed by the fact that for one
or more pairs of values of p and o, p, and , are always equal.
We can, however, without restricting the generality, so arrange
the indices that congruent coordinates in both systems have
the same index. The systems are then coupled when for one
or more values of p

Po—p,=0 @)
continually. From this equation the equations
p,—2,=0 (i)
or
dp,—dp,=0 (iii)

immediately follow.

455. Definition. By a force we understand the inde-
pendently conceived effect which one of two coupled systems,
as a consequence of the fundamental law, exerts upon the
motion of the other.

456. Oorollary. To every force there is necessarily always
a counterforce (Gegenkraft).

For the conception of the effect which the system, referred
to in the definition as the second, produces upon the first, is
by the definition itself also a force. Force and counterforce
are reciprocal in the sense that we are free to consider either
of them as the force or the counterforce.

457. Problem. To obtain an expression for the effect
which one of two coupled systems produces nupon the motion of
the other.

Let m be the mass, and the » quantities p, the coordinates
of the first system ; and let the % equations
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r

Ep Dpbp=10 ()
1
be its equations of condition. Let m be the mass and the ¢
quantities g, the coordinates of the second system ; and let the
k equations
Sep =0 i)
1
be its equations of condition. Between the two there may
further be for one or more, say 4, values of p, equations of
coupling of the form
P, —0,=0 (iii).
Let us now consider the motion of the first system under the
action of the second, and regard it as a guided system. So
long as the pp’s do not appear in the equations (iii) the
accelerations along them are given by the equations (442)

k
mf,+ 2" Ptx=0 @iv);
1

but for those p,'s which appear in (iii) we must take into
consideration these equations as well, and consequently multiply
the coefficient of p, in them, namely — 1, by an undetermined
factor which may be called P, and add the product to the
left-hand side; thus, then, for these—

k
nf,+ Skp P~ P, =0 )
1

The appearance of the i quantities P, in the equations of
motion increases the number of unknowns in them by %, and
for the determination of these % quantities the number of
equations of condition is also increased by the A equations (iii),
in which we must regard the f,’s as given explicit functions
of the time. But if we assume that the quantities P, are not
unknown, but are given immediately as functions of the time,
then the % equations (iii) and any knowledge of {1, and of the
second system are unuecessary; the A+ equations (i), (iv)
and (v) are again sufficient for the unique determination of
the £+ 7 unknowns P, and 3, The % factors P, consequently
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represent completely the effect of the second system on the first,
and their aggregate can be regarded as an analytical expression
for this effect, as is required by the problem.

458. Theorem 1. If we wish to represent in a symmetrical
manner the effect of the first system on the second, we must
write the equations of coupling in the form

b,— ﬁp =0 @@,
and for the p,’s which do not appear in (i) we have the follow-
ing equations of motion

mf +2 P, =0 (i),
while for the remaining pps they take the form
mf, + Expx,px -$,=0 (i) ;
1

where by the }8,’s are understood the undetermined multipliers
of equations (i). The aggregate of the §B,’s gives us an expres-
sion for the effect which the first at any instant has on the
motion of the second.

459. Theorem 2. Thus we can write all equations of
motion of the first system in the form

k
mf,+ DxpPy—P,=0 M,
1
and of the second in the form
e+ g, 8, 8,=0 G

“hen we decide (which is permissible, although arbitrary) that
for all coordinates which are not coupled the quantities P, and
19, are to be zera. It is true that P, and {8, thereby lose “their
significance as a system of multipliers of the equations 457
(iii) and 458 (i); but they retain their significance as an ex-
pression for the effect which the one system has on the other.

460. Analytical Representation of Force. In accord-
ance with the definition § 455 we may and shall decide that the
aggregate of the quantities P,, singly determined for all values
of s by § 459, forms the analytlcal expression for the force
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which the system p, exerts on the system p, In a similar
manner the aggregate of the quantities §8, forms the analytical
expression for the force which the system p, exerts on the
system p,. The individual quantities P, or {8, are called the
components of the force along the corresponding coordinates
D, Or P, or, for short, the forces along these coordinates.

By this determination we place ourselves in agreement
with the existing notation of mechanics; and the necessity for
securing such an agreement sufficiently justifies us in choosing
this particular determination out of several permissible ones.

461. Corollary 1. The force which a system exerts on a
second may be considered a vector quantity with regard to the
second system: 7.e. as a vector quantity whose components
along the common coordinates are in general different from
zero; whose components along the coordinates which are
not common vanish; but whose components in such directions
as cannot be expressed by changes of the coordinates used
remain undetermined.

462. QOorollary 2. The force which one system exerts on
another may also be considered as a vector quantity with regard
to the first system : .. as a vector quantity whose components
along the common coordinates are in general different from
zero ; whose components along the coordinates which are not
common vanish ; but whose components in such directions as
cannot be expressed by means of changes in the coordinates
used remain undetermined.

463. Observation. Considered as vector quantities with
regard to a system, every force contains components which
depend on the choice of coordinates, .. on arbitrary convention.
This arises from the fact that on the choice of coordinates
depends the manifold of those motions of a system which we
take into consideration; and in the direction of which we
may therefore admit a possible effect.

464. Note 1. If a system is coupled successively with
several other systems, and the same force is thereby exerted
upon it by these systems, then its motion is the same, however
much these other systems may differ amongst themselves.

We therefore speak (in accordance with definition § 455)
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of the motion of a system under the influence or action of a
force simply, without mentioning the other system to which it
is due, and without which it could not be conceived.

465. Note 2. If a system is coupled successively with
several other systems, and the same motion results, then it may
exert upon each of these other systems the same force, even
though these systems may be entirely different from each other.

‘We therefore speak (in accordance with definition § 455)
of the force which a moving system exerts simply, without
mentioning the other system upon which this force is exerted,
and without which it could not be conceived.

466. Note 3. Since all forces which are simply spoken
of as such can be no other than those which are exerted by
material systems on material systems in accordance with the
fundamental law, all forces must as a matter of course have
certain properties common. The sources of all such common
properties are the properties of material systems and the funda-
mental law.

Action and Reaction

467. Notation. (1) The components of the force which the
P, system exerts on the p, one, considered as vector quantities
with regard to the p, system, have already been denoted in
§ 460 by P,. If we regard this same force as a vector quantity
with regard to the system p,, then its components along g, will
be denoted by 8,”. Thus for all common coordinates

P p= 199'
identically.

(2) The components of the force which the p, system
exerts on the P, system, considered as vector quantities with
regard to the p, system, have already been denoted in § 460
by §9,. If we regard this same force as a vector quantity with
regard to the p, system, then its components along p, will be
denoted by P,’.  Thus for all coordinates

- L
identically.
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The forces exerted on a system are thus denoted by un-
accented letters, whilst the forces exerted by a system are
denoted by accented letters, as long as we regard them as
vector quantities with regard to the system itself.

468. Proposition. Force and counterforce are always
equal and opposite. By this is meant that their components,
along each of the coordinates used, are equal and opposite ;
and this is equally true whether we regard force and counter-
force as vector quantities with regard to the one or the other
system.

For we may regard the two coupled systems (§ 457) as
a single free system. Its mnass is m +m, and its coordinates
are p, and p,. Its equations of condition are the equations
457 (i) and (ii) and the equations of coupling as in 457 (iii).
If in addition we denote the multipliers of the equations (i)
by P,°, those of equation (ii) by {,°, and those of the equation
(iii) by P,°, then the equations of motion of the total system
take the form

13

mf,+ 2"1’ wlx =L =0 ()
1
|3

mf, + Dx i, +P, =0 (i),
1

where, for the coordinates that do not appear in the equations of
coupling, the P,”’s are to be put zero.

But the motion represented by these equations is that
which before was considered as the motion of the separate
systems. We consequently obtain a possible solution for the
above equations when we substitute for £, and f, their former
values, and make

Po=T, $,=, (iii),

and in (i)
1): = P, (iv),

and in (ii)
P°= -1, (v).

Moreover, since the undetermined multipliers are singly
determined by the equations (i) and (ii), this possible solution
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is at the same time the only possible solution. Therefore the
equations (iv) and (v) necessarily hold ; thus from them

P,=-Pp,
or, using the notation of § 467,

P,= P/

.= - in,'

which proves the proposition.

469. Observation 1. The foregoing proposition corre-
sponds to Newton’s Third Law, and is also known as the
Principle of Reaction. Nevertheless its content is not quite
identical with that of Newton’s Third Law. Their true relation
is as follows :—

Newton’s Law, as he intended it to be understood, contains
our proposition completely; this is shown by the examples
appended to his statement of the law.

But Newton’s Law contains more. At least it is usually
applied to actions-at-a-distance, 7.e. to forces between bodies
which have no common coordinates. But our mechanics does
not recognise such actions. Thus in order to be able to adduce
as a consequence of our proposition the fact that a planet
attracts the sun with the same force that the sun attracts the
planet, it is necessary that further data should be given as to
the nature of the connection between the two bodies.

4'70. Observation 2. It is open to doubt, whether the ex-
tension of the application of the principle of reaction beyond what
is contained in proposition 468 as to its form and content, can
rightly be used as a fundamental principle of mechanics; or
whether rather the actual and universally valid content of that
principle has not been completely included in proposition 468.

As far as the form is concerned, it is manifest that the
statement of the law is not quite clearly determined when
applied to actions-at-a-distance. For when force and counter-
force affect different bodies, it is not quite clear what is meant
by opposite. For example, this is seen in the case of the
mutual action between current-elements.

As far as the content is concerned, the application of the
principle of reaction to actions-at-a-distance commonly found

c et -
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in mechanics manifestly represents an experiential fact, con-
cerning the correctness of which in all cases people'are begin-
ning to be doubtful. For instance, in Electromagnetics we are
almost convinced that the mutual action between moving
magnets is not in all cases strictly subject to the principle.

Composition of Forces

471. Proposition. If a system is simultaneously coupled
with several other systems, then the force which the aggregate
of these systems exerts on the first is equal to the sum of the
forces which the individual systems exert on it.

For let there be a system 1 of mass m and coordinates p,,
whose equations of condition are the % equations,

r

2””"”" 0 (),

and let this be simultaneously coupled with the systems 2, 3,
etc., whose coordinates are ", p‘,”’, ete.

First consider the systems 2, 3, etc., as separate systems.
Then the equations of coupling for every common coordinate

P, are to be written in the form

]JP B, =0 (ii)
P, —p,=0, etc. (iid).

If now we treat the system made up of 1, 2, 3, etc., as a free
system, and denote the multipliers of the equations (i) by P
those of (ii) by P,” and of (iii) by P,”, etc., then we obtain the
equations of motion of the system 1 in the form

mf,+ zx B =P =D/ —ete.=0 (iv),

where all the quantities P,", P,”, etc., as well as P, are singly-
determined quantities. P, A P i etc. represent the ¢ components
of the forces which the systems 2 3, etc., respectively exert on
the system 1.

Secondly, if we regard the systems 2, 3, ete., as forming

one system, then for the quantities p,", p,”’, etc., which by equa-
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tions (ii), (iii), etc., are equal, one single coordinate p, can be
used, and in place of those equations of coupling we have now
for each common coordinate p, the one equation

jjp -p,=0 (v).
If P, is its multiplier, and we denote by P,° the multipliers of

the equations (i) which correspond to the present system of
equations of motion, then these take the form

k
mf, + Zx PP —P,=0 (vi).

The P,’s represent the components of the total force exerted on
the system 1.

Now this different mode of conception cannot alter the
motion which ensues according to the fundamental law.
Therefore a possible solution of the equations (vi) is obtained
by using the former solution and putting

P°=P, (vii)
P,=P +P"+ ... (viii).

Moreover, since there is only one possible solution, the foregoing
is the one, and the equation (viii) which contains our proposition
must necessarily hold. ’

472. Corollary 1. Any number of forces exerted on a
system, or by a system, can be regarded as a single force, namely,
that force which, considered as a vector quantity with regard to
the system, is equal to the sum of these forces.

When we represent a number of forces in this way, we
say that we compound them. The result of the composition
is called the resultant of the individual forces.

473. Corollary 2. Any force exerted on a system, or by
a system, can be conceived as a sum of any number of forces,
namely, of any number of forces the sum of which, regarded as
vector quantities with regard to the system, is equal to that
original force.

When we represent a force in this way, we say that we
resolve it; the forces which result from such a resolution we
call the components of the original force.

474. Observation. The geometrical components of a force
(o
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along the coordinates can at the same time be considered com-
ponents in the sense of § 473.

475. Definition. A force which is exerted by a smgle
material point, or on a single material point, is called an
elementary force.

476. Observation. As a rule, elementary mechanics
means by forces only elementary forces. By way of distine-
tion, the more general forms of forces hitherto considered by
us are denoted as Lagrangian forces. Similarly we might
denote the elementary forces as Galilean or Newtonian forces.

477. Corollary 1. Every elementary force can be repre-
sented by the geometrical displacement of a point, and there-
fore by a straight line given in magnitude and direction.

For each elementary force is a vector quantity with regard
to a single point.

478. Corollary 2. The composition of the elementary
forces, which. act at the same point, is performed according
to the method of geomet,ncal composition and resolution of
straight lines. .

In particular, two forces acting at the same point can be
combined into a single force, which is represented in magni-
tude and direction by the diagonal of a parallelogram whose
sides represent these forces in magnitude and direction (Paral-
lelogram of Forces).

479. Corollary 3. Every Lagrangian force can be repre-
sented as a sum of elementary forces, and is therefore capable
of being resolved into elementary forces.

For every displacement of a system can be conceived as a
sum of displacements of its individual points.

480. Corollary 4 The components of a force along the
rectangular coordinates of the system on which the force acts,
or which exerts the force, can be directly conceived as
elementary forces, which act on the individual material points
of the system.

Motion under the Action of Forces

481. Problem 1. To determine the motion of a material
. gystem under the action of a given force.



-

v SYSTEMS ACTED ON BY FORCES : 195

The solution follows directly from § 457. Let the P,’s be
the given components of the force acting along p,, then one uses
the r equations

k
mf,+ Dxp,,P,=P,
1

together with the % equations of condition of the system for
the determination of the r+ 4 quantities p, and P,, and these
equations are sufficient to determine them without ambiguity.

482. Observation 1. The equations of motion of a system
acted on by forces have in rectangular coordinates the form
of the 3z equations

i
mlliv + 21‘ wquc = Xr’

where the X,’s are the components of the force along z,, and
for the rest the notation of § 368 is used.

483. Observation 2. If the coordinate p, is a free coor-
dinate, then the equation of motion corresponding to it takes
the simple form

If in a holonomous system all the coordinates P, are free,
then all the equations of motion of the system take this form,
and these » equations are sufficient to determine the =
quantities p,

484. Corollary. The natural motion of a material
system from a given instant onwards is singly determined by
position and velocity of the system at that instant and the
knowledge of the forces acting on the system for all times from
that instant onwards (¢f. §§ 331, 444).

485. Proposition. The acceleration which a number of

forces simultaneously acting produce in a system is equal to

the sum of the accelerations which each force acting alone
would produce.

For the equations of motion § 481 are linear in f, and
P,. Thus if the valu?-systems Jo Pys S5y P etc., are the solu-
tions for these equations for the forces P, P, etc., then the
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value-system f,+f+ .. ., Py+D, ... is the solution
for the force P, + P+ . .

486. Observation. The content of the above proposition
can also be rendered by the statement that any number of
simultaneously ‘acting forces are independent of one another
with regard to the acceleration which they produce. This
principle has been known and used since Galileo’s time.

487. Corollary. The acceleration which the resultant of
any number of forces produces in a system is equal to the
sum of the accelerations which the components acting alone
would produce on the system (§§ 472, 473).

488. Proposition., If a force, as a vector quantity, is
perpendicular to every possible displacement of a material
system, then it has no effect on the motion of the system—
and conversely

For if = is such a force, then its components , along p,
have the form (§ 250)

T = ZxPxp'Yx-

If now this force be made to act on the system in addition
to the force P, then the equations of motion can be written
in the form

k
mf, + zxpx‘,(Px - '7x> =P,
1

In the solution of these equations with regard to 7, and
P, the P/s alone are increased by «,; the j,’s, which alone
determine the motion, remain unaltered.

Conversely—if the addition of the components o, to the
right-hand side of the equations § 481 does not alter J» but
only P,, then m, can be written in the form

k
'Il' = "pxp'Yx

Thus the force = is perpendicular to every possible displace-
ment of the system (§ 250).
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489. Observation. The proposition states to what condi-
tion that part of a force, considered as a vector quantity, is
subjected, which depends upon the choice of coordinates and
therefore upon our will (§ 463). For this part must neces-
sarily be such as to have no effect on the actual motion.

490. Corollary., Although the motion of a system
can be obtained without ambiguity from a knowledge of the
forces which act on the system, still the force which acts on
a system can not be determined without ambiguity from the
motion of the system.

491. Problem 2. To determine the force which a material
system exerts in a given motion.

In accordance with § 467 we denote by P,’ the component
of the force required along p,; then by §§ 468 and 481 we get

k
P/ =mf,— ZXPXPPX'

In these equations the f,’s are to be considered as given, and must,
moreover, satisfy the equations of condition. The quantities
P, are likewise determined, when that system is given with
which the one considered is coupled. But when only the
motion of the p, system is given, the P,’s remain unknown.
The force which a moving system exerts is thus not completely
determined by the knowledge of the motion of the system
alone, but contains an undetermined summation whose com-
ponents have the form

k
M= DXDye
1

and which is therefore perpendicular to every possible dis-
placement of the system.

492. Observation. Although all the components of the
force exerted by a moving system are not singly determined
by the motion of the system, yet the components in the direc-
tion of every possible displacement of the system are singly
determined by its motion.

493. Corollary. The components of the force which a
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moving system exerts in the direction of every free coordinate
of the system are singly determined by the motion.

For if p, is a free coordinate, then the p,'s vanish, and
with them the undetermined series ; thus the component of the
force of the system along p, can be written in the forms

 S— § 491) (i)
- aai“%@ﬁ) § 291) ) Gi)
- %“j_% @§ 201) (i) (i)
- _2;_3_9, §294)  (iv).

Internal Constraint

494. Proposition. The acceleration of a system of
material points between which no connections exist, takes place
in the direction of the force which acts on the system, and its
magnitude is equal to the magnitude of the force, divided by
the mass of the system.

For when no connections exist between the = points of a
material system, then for every one of the 3n rectangular
coordinates of the system (§ 482)

m,.. xv .
2, ="
m m
but the left-hand side of the equation represeuts the components
of the acceleration of the system along z, (§ 275).

495. Corollary. The acceleration of a single material
point takes place in the direction of the force acting on it, and
its magnitude is equal to the magnitude of the force, divided
by the mass of the point (Newton’s Second Law).

496. Observation. If connections exist between the points
of a material system on which a force acts, then the acceleration
of the system differs in general from that given by proposition
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§ 494. We may thus regard the connections of the system
as the cause of this difference, and by § 385 we have to denote
this difference as the internal constraint of the system.

497. Problem. To determine the internal constraint of
a system which moves under the action of forces.

The actual component of the acceleration of the system
along the general coordinate p, is f,; the component which
would arise if the equations of condition did not exist is
§ 494) P,/m; the difference of the two quantities, or

P o
2, =f P 7: (1)
is thus the component of the constraint along p,.

The knowledge of the components themselves along p, is in
general insufficient for the determination of the magnitude of
the constraint. If, however, we use rectangular coordinates,
we obtain for the component along 2,

1, . .
2,= ;b(mvxv - Xv) (ll),

and consequently for the magnitude z of the constraint the
positive root of the equation (§ 244)

8n

= 1 7 2
met = Do, ~ X,)

1
8n
5 _X\?
= yvm,\| &, — —
1 mv

498. Proposition 1. The magnitude of the constraint of
a material system under the action of forces is at every instant,
as in a free system, smaller for the natural motion than for any
other possible motion which coincides with it, at the moment
considered, in position and velocity.

For the necessary and sufficient condition that, with given
values of X,, the quantity 4m2? should be a minimum, is that
the 3n equations, obtained as in § 155, viz,

(iif).

i
mj, =X, + Dz, X,=0,
1
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should be satisfied; where X, denote the ¢ undetermined
multipliers which with the 3» quantities %, are to be singly
determined from these 3n equations and the ¢ equations of
condition of the system. But the foregoing equations give the
same values for %, and X, as the corresponding equations for
the natural motion (§ 482).

499. Observation. The foregoing proposition contains a
complete statement of Gauss’s Principle of Least Constraint.
We might regard proposition 388 as a particular case of it.
But according to our general conception we prefer to regard
that proposition as the general one, and to consider the foregoing
as the application of it to particular and more complex relations.

500. Proposition 2. In the natural motion of a system
under the action of a force the direction of the constraint,
as in the natural motion of a free system, is always perpen-
dicular to every possible or virtual displacement of the system
from its instantaneous position.

For by §§ 497 (i) and 481 the components of the con-
straint along p, may be written in the form

1<
7= — -?;prx,Px.
1

The constraint as a vector quantity is thus (§ 250) perpen-
dicular to every possible displacement of the system.

501. Symbolical Expression. If we denote by &p, the
changes of the coordinates p, for any possible displacement of
the system, then we can express the foregoing proposition by
the following symbolical equation (g¢f. § 393)—

J P .
2»<f, - _e>sp,, =0 @),
1 m
which in rectangular coordinates takes the form
8n
zv('/n,'i', —-X,)ér,=0 (ii).

1
502. Observation. Proposition § 500 contains the complete
Principle of d’Alembert, and the equations § 501 (i) and (ii) the
usual expression for it. With regard to the relation between
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Pproposition § 500 and proposition § 392 the same remark is
to be made as in § 499. .

503. Corollary 1. The component of the acceleration of
a material system in the direction of any possible motion is
equal to the component of the force acting in this direction,
divided by the mass of the system.

For the component of the constraint vanishes in the direc-
tion of every possible motion.

504. Corollary 2. The component of the acceleration of
a material system in the direction of its actual motion is equal
to the component of the force acting in that direction, divided
by the mass of the system.

505. Corollary 3. The component of the acceleration of
a material system along any free coordinate of the system is
equal to the component of the force acting in that direction,
divided by the mass of the system.

506. Proposition. In the natural motion of a material
system under the action of forces the component of the accel-
eration along every coordinate of absolute position is always
equal to the component of the force acting in that direction,
divided by the mass of the system; and this holds good what-
ever the internal connection of the system is.

507. Corollary 1. If we choose the coordinates of a
system in any manner so that there are six coordinates of
absolute position amongst them, then we can with a knowledge
of the forces acting on the system,—yet without a knowledge
of the internal connection of the system,—always obtain six
of the equations of motion of the system.

508. Corollary 2. In particular, if we arrange the coor-
dinates of absolute position as in § 402, and apply the proposi-
tion to the direction of the three coordinates a, a, a, then
we get the three equations

n n

2' mi, = zvXSV
1 1
n

n
Evnluﬂ‘av-l = "xgv-l

1 1
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n n
PILENECY"D
1 1

These three equations, which admit of the interpretation
that the centre of gravity moves as if the whole mass were
condensed at the centre of gravity and all the elementary forces
applied there, form the so-called extended Principle of the
Centre of Gravity (¢f. § 404).

509. Corollary 3. Applied to the direction of the three
coordinates of absolute position @;, w,, , the proposition gives
the three equations

n n
2' mv(xsv - 2‘253;‘ -1~ %y~ lﬁsv - 2) = 2" (T‘sv - gxsv 1 a’sv - st - g)
1 1

n

. kd
2" MLy Fyyg =Ty gy )= 2' (@ Xgypop— 25Xy )
1

1
ng n
2"’”?, (.‘L v - l‘l‘ _xgv i?g;v-l) = 2" (ms —1X3v —xsv ng—l)‘
1 1
These three equations form the so-called extended Principle
of Areas (¢f. § 406).

Eneréy, Work

510. Definition. The increase in the energy of a system,
conceived as a consequence of force exerted on the system, is
called the work of that force.

The work which a force performs in a given time is
measured by the increase of the energy of the system on
which it acts, in that time.

Any decrease in the energy owing to the action of force
we consider a negative increase. The work of a force may
thus be positive or negative.

511. Corollary. When a force acting on a system does
a certain amount of work, the counterforce exerted by the
system always does an equal and opposite amount of work.

For the latter work is equal to the increase of the energy
of that system, with which the one under consideration is
coupled ; the sum of the energies of the two systems is, how-
ever, constant.
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512. Proposition. The work which a force does on a
system whilst it traverses an element of its path is equal to
the product of the length of the element and the component of
the force in its direction.

For the increase dE of the energy in the time-element d¢,
in which the element ds is traversed, is (§ 283)

dE=mvvdt =m 1 ds.

By § 280 % is the component of the acceleration of the system
in the direction of its path; thus by § 504 mé is the com-
ponent of the force in that direction.

513. Observation 1. The work is also equal to the pro-
duct of the magnitude of the force and the component of the
element of the path in its direction.

514. Observation 2. If during the motion along the
path-element ds the coordinates p, suffer the changes dp,, then
the work done by the force is represented by the equation

r

dE = DpP,p,

1

For the component of the force sn the direction of the path-
element is by § 247 equal to
1o,
Dy

Elpl’P ds

515. Corollary 1. The force acting on a system does
positive or negative work, according as the angle which it
makes with the velocity of the system is smaller or greater
than a right angle. If the force is perpendicular to the direc-
tion of motion, it does no work.

516. Corollary 2. A force which acts on a system at
rest, does no work.

Equilibrium, Statics

517. Definition. We say that two or more forces which
act on the same system are in equilibrium when any one of them
counteracts the effect of the others, 7.e. when the system moves
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under the action of both, or of all of them, as though none of
them existed.

518. Proposition. Two or more forces are in equilibrium
when their sum is perpendicular to every possible (virtual)
displacement of the system from its instantaneous position,
and conversely.

The proposition follows immediately from §§ 471 and
488.

519. Symbolical Expression. If we denote by P/, P,”,
etc., the components of the respective forces along p,, and by
dp, the changes of p, for any possible displacement of the
system, then the foregoing proposition can be expressed in the
form of the symbolical equations

DR/ +P+.. )op,=0.
1

¢f. §§ 393, 501.

520. Observation. The foregoing proposition contains
the Principle of Virtual Velocities (displacements, momenta),
and the equation § 519 the usual analytical form of it.

521. Corollary 1. If several forces acting on a system
are in equilibrium, then the sum of the work done by the
forces in any possible (virtual) displacement of the system
from its instantaneous position is zero, and conversely (Principle
of Virtual Work).

For if we write the equation § 519 in the form

DeP/Sp,+ DL, "8p,+. .. =0,
1 1

then the proof follows by § 514.

522. Corollary 2. If two or more forces preserve equi-
librium in a system, then the sum of their components in the
direction of any possible motion of the system is zero.

523. Corollary 3. If two or more forces preserve equi-
librium in a system, then the sum of their components along
every free coordinate of the system vanishes.

524. Proposition. If two or more forces preserve equi-
librium in & system, then the sum of their components along
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any coordinate of absolute position is zero, no matter what
may be the internal connection of the system.

- 525. Observation. Thus without a knowledge of the in-
ternal connection of a system, we can nevertheless always write
down six necessary equations of condition for equilibrium. If
we choose as coordinates of absolute position the six quantities
a,a,ay, @00 Which were introduced in § 402, then the fore-
going proposition furnishes those six equations which corre-
spond to the principles of the cehtre of gravity and of areas,
and which Lagrange investigates in chapter iii. §§ 1 and 2 of
the first part of the Mécanique Analytique.

526. Note 1. If two or more forces are in equilibrium
when the system is in a given position and has a given velocity,
then these forces are also in equilibrium in the same position,
no matter what the velocity be.

For the condition of equilibrium does not contain the
actual velocity of the system.

527. Note 2. If two or more forces are in equilibrium
when the system is at rest, then the system continues in its
state of rest. And conversely—if, notwithstanding the action
of two or more forces, a system is at rest, then the forces on
the system are in equilibrium.

528. Qorollary 1. Two forces which, acting simultane-
ously on a system at rest, do not disturb the equilibrium of
the system, have equal and opposite components in the direc-
tion of every possible motion of the system.

529. Corollary 2. Two forces which act successively on
the same system at rest at the same time as other forces, and
leave the system at rest, have the same components in the
direction of every possible motion of the system.

530. Observation. From the last two corollaries the
statical comparison of forces is deduced.

Machines and Internal Forces

531. Definition. A system whose masses are considered
vanishingly small in comparison with the masses of the
systems with which it is coupled, is called a machine.

A machine is thus completely represented, as to its effect on
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the motion of the other systems, by its equations of condition ;
the knowledge of the expression for the energy of the machine
in terms of its coordinates is not necessary.

A machine is called simple when it has only one degree of
freedom.

532. Proposition. So long as a machine moves with
finite velocity the forces acting on the machine are continually
in equilibrium.

For if these forces gave a component in the direction of
any possible motion of the machine, then the component of
the acceleration in this direction would be infinitely great on
account of the vanishing mass (§ 504).

" 533. Corollary. There exists a series of homogeneous
linear equations between the components of the forces acting
on a machine along its coordinates, and their number is equal
to the number of degrees of freedom of the machine. A simple
machine is represented by a single homogeneous linear equation
between the forces acting on its coordinates.

534. Note 1. If a machine is coupled as to all its
coordinates with two or more material systems, then the
mechanical connection produced between the latter can be analy-
tically represented by a series of homogeneous linear differential
equations between the coordinates of the connected systems.
For in the equations of condition of the machine we can replace
its coordinates by the equal coordinates of the connected systems.

Conversely, therefore, we can physically interpret any given
analytical series of homogeneous linear differential equations
between the coordinates of two or more systems as a mechanical
connection of the kind which we denote as a coupling of these
systems by means of the machine.

535. Corollary. If two or more systems are coupled by
a machine, then the work done by each of the systems is equal
and opposite to the work done by the other systems. Conse-
quently no work is gained by coupling systems by a machine.

For the forces due to the systems preserve equilibrium in the
machine, and thus the sum of the work done by them is zero.

536. Note 2. Any material system can in various
ways be regarded as made up of two or more systems which
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are coupled by machines. For if we divide up the masses of
the system into several parts, and if p are the coordinates of
the first part, p,” of the second, etc, then we may consider
those equations of condition of the complete system which only
contain p,, as equations of condition of the first partial
system, those equations which only contain p,” as equations of
condition of the second partial system, and so on; whilst those
equations of condition of the complete system which contain
2, p; . . ., may beregarded as the equations of the machine
coupling the partial systems.

The forces which in this permissible though arbitrary concep-
tion are exerted on the partial systems by the machine coup-
ling them will be denoted as internal forces of the system.

537. Corollary 1. Every such series of internal forces
may replace a portion of the connection of the system. For if
we set aside those equations of condition of the whole system

- which represent the machines between the partial systems, but

retain the forces exerted by the machines, then the system
moves as before.

538. Corollary 2. The whole connection of a system
can be set aside and replaced by a series of elementary forces
which act on the individual material parts of the system.

For we may regard the individual points as partial
systems, and the whole system as the aggregate of the partial
systems coupled by machines.

539. Oorollary 3. The internal forces which entirely or
partially replace the connection of a system are always in
equilibrinm when acting on the original system.

For by § 532 they preserve equilibrium in the machines
which form parts of the original system.

540. Observation. This last consideration is the one by
which, in the usual development of mechanics, the transition is
made from the laws of equilibrium (the Principle of Virtual
Velocities) to the laws of motion (d’Alembert’s Principle).

Measurement of Forces

541. Our considerations give three independent methods
of measuring directly those components of the forces which
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affect phenomena. By the application of any one of these
three methods the forces can be made objects of direct
experience, i.c. symbols for determinate connections of sensible
perceptions.

542. The first method determines the force from the masses
and motions of the system by which it is exerted. Physically
this method is known as the measurement of force according to
its origin. It is, for instance, applied on the assumption that
equally stretched springs, equal quantities of explosive powder,
etc., ceteris paribus, exert equal forces.

543. The second method determines the force by means
of the masses and motions of the system on which it acts. In
physics this method is known as the dynamical measurement
of force. It was, for instance, applied by Newton when he
deduced the force acting on the planets from their motion.

544. The third method determines the force by reducing
it to equilibrium with known forces. This method is known
as the statical method. For example, all measures of forces by
the balance depend upon this.

545. When these three methods are used for the deter-
mination of one and the same force, paying attention to the
relations deduced by us, they must lead in all cases to the
same result, provided the fundamental law, on which our con-
siderations are based, actually comprises correctly all possible
mechanical experience.




CHAPTER V
SYSTEMS WITH CONCEALED MASSES

I Oyclical Motion

546. Deflnition 1. A free coordinate of a system is said -
to be cyclical when the length of an infinitesimal displacement
of the system does not depend on the value of the coordinate,
but only on its change.

547. Observation 1. Cpyclical coordinates exist; for
instance, a rectangular coordinate of the system, when free,
satisfies the definition. Cyclical coordinates can always be
introduced, when infinitesimal displacements of the system
are possible which do not involve a change in the mass-dis-
tribution in space, but only a cyclical interchange of the masses ;
hence the name. Cyclical coordinates may, however, appear
under other circumstances, as the example of rectangular
coordinates shows,

548. Observation 2. The energy of a system does not
depend on the value of its cyclical coordinates, but only on
their time-rates of change.

549. Deflnition 2. A cyclical system is a material system
whose energy approximates sufficiently near to a homogene-
ous quadratic function of the rates of change of its cyclical
coordinates.

A cyclical system is monocyclic, dicyclic, ete., according as
it possesses one, two, etc., cyclical coordinates.

In a cyclical system the non-cyclical coordinates are
also known as the parameters of the system; the rates of

P
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change of the cyclical coordinates are also called the cyclical
intensities.

550. Observation 1. The condition that must be
approximately satisfied for cyclical systems cannot be rigor-
ously satisfied except in the case when the system possesses
only cyclical coordinates,

For if a quantity is a coordinate of a system, then its
change must involve a displacement of at least one material
point of the system ; the energy of this point is consequently
a quadratic function of the rate of change of that coordinate,
and the same holds for the emergy of the system. Strictly
speaking, then, the energy of any system contains necessarily
the rates of change of all quantities which are coordinates of
the system, and consequently the energy of a cyclical system
contains the rates of change of its parameters.

551. Observation 2. But this condition for the appear-
ance of a cyclical system can be satisfied to any degree of approxi-
mation so long as the system possesses cyclical coordinates.

It is, for instance, satisfied in the case when the parts of
the energy which contain the rates of change of the parameters
vanish in comparison with the parts which depend on the
cyclical intensities. This is always possible by taking the
rates of change of the parameters sufficiently small,or the cyclical
intensities sufficiently great. As to how small the former
must be taken or how great the latter, in order that a given
degree of approximation may be attained, depends on the
particular values of the coefficients in the expression for the
energy.

In what follows it will always be assumed that the
condition for a cyclical system is satisfied to such a degree of
approximation that we may regard it as absolutely satisfied.

552. Notation. We shall denote the cyclical coordinates
of the system by p,, their number by t, and the momenta along
p, by g,. The 7 non-cyclical coordinates may be denoted by
2, and their momenta along p, by ¢, Let the mass of the
cyclical system be mt.

Let the external forces which act on the system have P,
as their components along p,, and 33, as their components along
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P The forces which the system itself exerts then have com-
ponents along p,, likewise along p,, which by § 467 are to be
denoted by P’, and J¥’, respectively.

553. Corollary 1. The energy (€ of a cyclical system
can be written in the form

E= %mZI»'EI« 8ol Do

1 14 T
= ﬁzlpzlc b oo

where a,, and b,, are functions of p, alone, but not (§ 548)
of y, while in other respects they have the same properties
and conuection as a,, and b, (§ 59 e seq.).

If we consider ¢ a function of p, and i’p’ a8 the first form
represents it, then its partial differential .may be denoted by
0,@; but if we regard it as a function of p, and g, as the
second form represents it, its partial differential may be denoted
by 8, (of. § 288).

554. Corollary 2. For all values of p the following
equations hold—

BE==0 § 289) ©
aé—‘g—E=j)P= 0 (§ 290) (ii)
)

—gf= 0 (iii)
%= 0 (iv).

These equations contain the peculiar characteristics of cycli-
cal systems, and from them are deduced their special properties.

The equation (ii) repeats the observation (§ 550) that a
contradiction exists between the assumption that the form of
the energy is strictly the one assumed, and that nevertheless
the p,’s are quantities which change with the time. We have
then, conformably with § 551, to take the equation to mean
that when (& has very approximately the chosen form, the p,’s
must be considered as quantities which change very slowly.



212 SECOND BOOK CHAP.
Forces and Force-Functions

555. Problem 1. To determine the force P’ which the
cyclical system exerts along its parameter p,.
By equations § 493 (iii) and (iv) and 5554 (i) we obtain

& 3 :
P’p _&)—P = app (l)a

or, in a more extended form,
13 T

[7):
PP’ = %mZGZr

2 o (id).

556. Oorollary. The forces of a cychca.l system along its
parameters are independent of the rates of change of these
parameters. '

It is always assumed that these rates of change do not
exceed the values which permit us to treat the system as a
cyclical one. Thus in Electromagnetics the attractions between
magnets are independent of the velocity of their motion, but
only so long as this velocity is considerably less than the
velocity of light.

557. Problem 2. To determine the force 33,’ which the
cyclical system exerts along its cyclical coordinate p,.
By equations § 493 (iii) and § 554 (iii) we obtain
B=-4 @
When developed by § 270 we have

m=m2«w, (i)

P/= -n3 a,,ﬁ,-mzlcz;%;eﬁ.@. (i),

558. Oorollary., If an external force acts on a cyclical
system, and if its components along p, are 3, then the changes
of the cyclical momenta are given by the equation.

4=,
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559. Proposition. When no forces act on the cyclical
coordinates of a cyclical system, then all the cyclical momenta
of the system are constant with regard to time. ’

For if the 3B,’s are zero, then the foregoing equations give
on integration

g, = constant.

560. Deflnition. A motion of a cyclical system in which
its cyclical momenta remain constant is called an adiabatic
motion ; and when its cyclical intensities remain constant it is
called an isocyclic motion.

The cyclical system itself is called adiabatic or isocyclic
when it is constrained to perform only adiabatic or isocyclic
motions,

561. Observation 1. The analytical condition for adia-
batic motion is that for all values of p

4,=0, (g,=constant.

The analytical condition for isocyclic motion is that for all
values of p ‘
f,=0, {,=constant.

562. Observation 2. The motion of a cyclical system is
adiabatic so long as no forces act along the cyclical coordinates ;
it is isocyclic when it is coupled as to its cyclical coordinates
with other systems which possess constant rates of change for
the coupled coordinates. Thus, in order that a motion may be
isocyclic, appropriate forces must act on the cyclical coordinates.

563. Deflnition. If the forces of a cyclical system along
its parameters can be expressed as the partial differential
coefficients with regard to the parameters of a function of these
parameters and some constant quantities, then this function is
called the force-function of the cyclical system.

564. Proposition. There exists a force-function both for
adiabatic and for isocyclic motion.
From § 555 (iii) for adiabatic motion we get

0 r r . .
P g2 3 bim o
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where the quantities (,{,/m are constants and the quantities
b, functions of the parameters solely.
Similarly we get for isocyclic motion from § 555 (ii)

PR~ L T "
P, =_2¢21a,,-§p,p, (i),
where the quantities mp,J, are constants and the quantities
-+ functions of the parameters solely.

565. Observation. We also distinguish the force-func-
tions for adiabatic or isocyclic motions as adiabatic or isocyclic
force-functions. There are other forms of motion of the system
for which force-functions exist, but such a function does not
exist for every given motion.

566. Additional Note 1. The force- function of an
adiabatic system is equal to the decrease of the emergy of the
system, measured from some arbitrarily chosen initial condition.
It is therefore equal to an arbitrary—i.c. not determined by
definition—constant, diminished by the energy of the system.

567. Additional Note 2. The force - function of an
isocyclic system is equal to the increase of the energy of the
system measured from some arbitrarily chosen initial condition.
It is therefore equal to the energy of the system diminished °
by an arbitrary constant. A

Reciprocal Characteristics

568. Proposition 1a. If in an adiabatic system an
increase of the parameter p, increases the component of the
force along another parameter p,, then conversely an increase
of p, increases the force along p,. Moreover, in an in-
finitesimally small increase, the quantitative relation between
cause and effect is the same in both cases.

For in an adiabatic system we may regard the quantities
v, as sufficiently independent elements for determining P,’;
hence the equation § 564 (i), which holds for adiabatic systems,
gives us

oP, aop/
ap[L apk’
which proves the proposition.
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569. Proposition 1b. If in an isocyclic system an
increase of the parameter p, increases the component of the
force along another parameter p,, then conversely an increase
of p, increases the force along p,. Moreover, in an infinitesimal
increase, the quantitative relation between cause and effect is
the same in both cases.

For in an isocyclic system we may regard the quantities
P, 83 sufficiently independent elements for determining P,':
hence the equation § 564 (ii), which holds for isocyclic systems,
gives us

op, op/
%~
which proves the proposition.

It is to be noted that this equation differs from the prevmus
one in meaning although it is identical in form.

570. Observation. In order that the two foregoing pro-
positions may admit of a physical application, it is sufficient
that two parameters of the cyclical system and the forces
along them should be accessible to direct observation.

571. Proposition 2a. If in a cyclical system an increase

* of the cyclical momentum ,, with fixed values of the parameters,

involves an increase of the force along the parameter p,, then
the adiabatic increase of the parameter p, causes a decrease of
the cyclical intensity jj,, and conversely. Moreover, in an
infinitesimal change the quantitative relation between cause
and effect is the same in both cases.

For we have

PA--J—555 , . 290);
(655 (i), P.= %(§ )

thus
aPA Qﬁ& »
Ao == (l )
30,. op, )
and the proposition furnishes the correct interpretation of this
equation.

572. Corollary. If in a monocyclic system an increase
of the cyclical intensity fJ, with fixed values of the parameters,
involves an increase of the force along the parameter p,, then
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the adiabatic increase of the parameter p, causes a deerease of
the cyclical intensity f1, and conversely.

For in a monocyclic system increase of the cyclical in-
tensity always goes hand in hand with increase of the cyclical
momentum, the parameters remaining fixed. In fact, for a
monocyclic system

q = maﬂ,
where @ is a necessarily positive (§ 62) function of the para-
meters of the system.

5'73. Proposition 2b. If in a cyclical system an increase
of the cyclical intensity j,, the parameters remaining fixed,
involves an increase of the force along the parameter p,, then
the isocyclic increase of the parameter p, involves an increase
of the cyclical momentum f,, and conversely. Moreover, in an
infinitesimal change the quantitative relation between cause and
effect is the same in both cases.

For we have
P/ = 38,,’%@ (655@1), g.= ;—M—E (289);
thus * s
Cur )

ai’n 3}7,\
and the proposition expresses this equation in words.

574. Oorollary. If in & monoeyclic system an increase
of the cyclical momentum ( involves an increase of the force
along the parameter p,, the parameters remaining fixed, then
the isocyclic increase of the parameter p, involves an increase
of the cyclical momentum g, and conversely.

The reason is the same as in § 572.

5'75. Observation. The foregoing propositions 2a and
2b admit of a physical application when it is possible to
determine a cyclical intensity and also the corresponding
cyclical momentum directly, .. to determine it without a know-
ledge of the coefficients &,,. This may happen. For instance,
in Electrostatics the differences of potential of conductors
correspond to cyclical intensities, the charges of the conductors
to the cyclical momenta, and both quantities can be directly
determined independently of one another.



—~

v CYCLICAL MOTION 217

The corollaries require only the direct determination either
of the cyclical intensity or cyclical momentum.

576. Proposition 3a. If in a cyclical system a force
exerted on the cyclical coordinate §, involves an increase
with the time of the force along the parameter p,, then an
adiabatic increase of the parameter p, causes a decrease of
the cyclical intensity jj, and conversely. Moreover, in an
infinitesimal change the quantitative relation between cause
and effect is the same in both cases.

For if we regard on the left-hand side of equation § 571
(i) the changes 9P, and 9q, as happemng in the time d¢, and
divide the differential coefficients in the numerator and denomi-
nator by this time d¢ and make use of equation § 558, where
the change dg, is considered as the effect of the force 39,, then

and the proposition expresses fully this equation in words.

577. Proposition 8b.! If in a cyclical system an increase
of the cychcal intensity j,, the parameters remaining fixed,
involves an increase of the force along the parameter p,, then
an isocyclic increase of the parameter p, involves a decrease
of the force of the system along the cyclical coordinate p,, and
conversely. Moreover, in an infinitesimal change, the quantita-
tive relation between cause and effect is the same in both cases.

For if we regard in the right-hand side of the equation
§ 573 (i) the changes og, and 9p, as occurring in the time dt,
we can put

og.= Loy, . ai=ddt= -2 /dt (557 ()

Ops = Sp.dt = Opdt
thus that equation becomes
R/ _ 7,
aﬁu aﬁ'\
and the proposition expresses this in words.
1 Printed as in the original MSS.—Ebp,
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578. Note. The propositions 3a and 3b admit of a
physical application when a cyclical intensity and also the
corresponding cyclical force-component are accessible to direct
observation. This happens, for instance, in Electromagnetics,
and one can best illustrate the meanings of these theorems
by translating them into the technical language of this branch
of physics.

Energy and Work

579. Proposition 1. In the isocyclic motion of a cyclical
system the work done on it through the coupling of its
cyclical coordinates is always twice the work it does through
the coupling of its parameters.

In the isocyclic motion {i, is equal to zero for all values
of p, and thus by § 514 and § 557 (iii) the work which the
external forces acting on the cyclical coordinates perform in
the unit of time is equal to

T T 13 r a L.
- 21’ ”p,ﬁp = mzll‘zl" Z’a%fp’p Pe

But the work which the system performs through the forces
along the parameters, calculated for unit time, is found equal to

r r_t _t aa". ..
She/s, - m S S b,
1 1 1 1 P
by the use of § 555 (ii).
The summations in both equations are identical except for

the notation, and the value of the series in the first equation is
therefore double that of the second.

580. Corollary. When an isocyclic system does work
through the forces along its parameters, then the energy of
the system increases at the same time, and by the same
amount as the work dome. When an isocyclic system has
work done on it through the forces along its parameters, then
the energy of the system decreases at the same time, and by
the amount of the work done on it.

For the increase of the energy of the system is equal to
the difference between the work done on it through its cyclic
coordinates and the work it does through its parameters.
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581. Observation. When an adiabatic system does work
through the forces along its parameters, then the energy of
the system decreases at the same time, and by the same amount
as the work done. When an adiabatic system has work done
on it by the forces along its parameters, then the energy of
the system increases at the same time, and by the amount of
work done.

For the work done on an adiabatic system through the
cyclical coordinates is zero (§ 562).

582. Proposition 2. In an adiabatic displacement of a
cyclical system the cyclical intensities always suffer changes
in such a sense that the forces along the. parameters caused
by these changes do negative work.

Let the quantities p, suffer the changes 8p, and the in-
tensities f§, the changes &, from the displacement. If only
the latter took place, then the forces P,’ would change by the
amount (§ 555 (ii))

5P/ = mz}z:ﬁa—i*;’:,s' »

and these 8Ps are what the proposition denotes as the forces
caused by 8fj,. The work done by them is given by

r r T a . .
Shartp, = w3 S S,
1 1 1 1 (4
T T
= m e 8813,
1 1

and the proof requires that this work should be necessarily
negative. But for the adiabatic motion

T
g.= mZ" a,.J1, = const,
1
thus
3 4
2" sawi’v == E’awsi)v‘
1 1
If we form these equations for all values of =, multiply them
in succession by the corresponding méj), and add them, we
obtain on the left-hand side the foregoing expression for the

work done, and on the right-hand side a necessarily positive
quantity (§ 62), which completes the proof.
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583. Oorollary. In an adiabatic displacement of a
cyclical system the cyclical intensities always suffer changes
in such a sense that the forces caused by these changes tend to
stop the motion which produces them.

This is in fact only another form of the foregoing proposi-
tion. It corresponds to Lenz’s Law in Electromagnetics.

584. Note. In eny infinitesimally small motion of a
monocyclic system, the work received through the cyclical co-
ordinates of the system bears the same ratio to the energy of
the system as twice the increase of the cyclical momentum of
the system does to this momentum. ‘

For the work d@® done through the cyclical coordinate g1
in the time df is given by

d@ = Pdyp = 4dy = qpdz = jdy,
while the energy (¢ may be written

€ =1qp,

thus
i@ _ ,dq
& “q

which proves the proposition.
585. Qorollary 1. In any motion of & monocyclic system
the expression
@

¢
is the complete differential of a function of the parameters and
cyclical intensity of the system. This function is
2logl,
Go

where (|, denotes the cyclical momentum for an arbitrarily
chosen initial position. This function is also called the entropy
of the monocyclic system.

.586. Oorollary 2. The value of the integral

i@
€
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for any finite motion of a monocyclic system depends only on
the condition of the system in its initial and final positions,
and not on the condition at any intermediate position. The
value of this integral is zero for every motion which carries
the system back to its initial position.

For the value of this integral is equal to the difference
between the entropy in the initial and final positions.

587. Oorollary 3. In the adiabatic motion of a mono-
cyclic system the entropy is constant.. For in the adiabatic
motion 13, and consequently d@, is equal to zero. Hence the
adiabatic motion of a monocyclic system is called isentropic.

Time-Integral of the Energy

588. Note 1. If in the adiabatic motion of a cyclical
system the cyclical coordinates pj, change in a given finite
time by §,, then the tune-mtegral of the energy of the system
for that time is equal to

%21’ 4.,

for the energy of the system can be written in the form

(286 (ii))
.
%21’ Gl
and for the adiabatic motion the g,’s are constant.

589. Note 2. The variation of the time-integral of the
energy of an adiabatic system when the motion of the system
is varied depends—firstly, on the variation of the parameters
during the whole time for which the integral is taken, and
secondly, on the variations which the constant cyclical momenta
of the system suffer.

590. Notation. We shall in what follows use the follow-
ing notation :—& will denote a variation by which the cyclical
momenta suffer arbitrary variations,

8, a variation by which the cyclical momenta suffer no
variations,
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and, finally, 3, a variation by which the cyclical momenta
suffer such variations that the initial and final values of the
cyclical coordinates remain unaltered.

591. Oorollary. From the notation we immediately get
for all values of p ‘
53,=0, &F,=0,
and consequently by § 588 for any variations of the para-
meters

% f Eit=$ 0,38, @

8 I Edi= %2" ijpqup (id).

592. Observation. In an adiabatic system it is always
possible, and in general possible in only one way, to give the
cyclical momenta such variations with any variation of the
parameters that the initial and final values of the cyclical
coordinates remain unaltered.

For from the general relation

lg
Bo= 2 Oeele
it follows that in an adiabatic system, when the p,’s change
from the values ,, to the values g1,
1

. 1
P =P = 1 2 e | Bt
[}

thus in any variation of the parameters and cyclical momenta

1 1
1< 1<
3]],1 - S]JPO = azlv q,s f bwdt + azl’ Sq, f h,,,dt
0 0

These equations form t unhomogeneous linear equations for the
t quantities 8¢|,, and thus admit of one, and in general only one,
solution—in particular in the case when the variations on the
left-hand side vanish.

Variations of the kind denoted by &, are thus always -

possible with any variation of the parameters.
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593. Proposition. In equal. and arbitrary variations of
the parameters in a given time the variations of the time-
integral of the energy in an adiabatic system are equal and
opposite when in the first instance the cyclical momenta
of the system are not varied, and in the second are varied in
such a manner that the initial and final values of the cyclical
coordinates remain unaltered.

For in any variation

ofeu=s,eur S} [y
1) %
=3, f @dt+ D80, 5
1

thus, in particular for a variation in which the initial and final
values of §J, remain unaltered,

5, f @t =35, f G+ i,
1

If twice the equation § 591 (ii) is subtracted from this, then

s,fqzdt=—s,fqe¢u,

which proves the proposition.
With these we may compare the allied propositions § 96
and § 293.

II. Concealed Cyclical Motion
Ezplanations and Definitions

594. 1. We say that a system contains concealed masses
when the position of all the masses of the system is not deter-
mined by means of those coordinates of the system which are
accessible to observation, but only the position of a portion of
them.

595. 2, Those masses whose position still remains un-
known when the coordinates accessible to observation have
been completely specified are called concealed masses, their
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motions concealed motions, and their coordinates concealed
coordinates. In contradistinction to these the remaining
masses are called visible masses, their motions visible motions,
and their coordinates visible coordinates.

596. 3. The problem which a system with concealed
masses offers for the consideration of mechanics is the follow-
ing :—To predetermine the motions of the visible masses of the
system, or the changes of its visible coordinates, notwith-
standing our ignorance of the position of the concealed masses.

597. 4. A system which contains concealed masses
differs from a system without concealed masses only as regards
our knowledge of the system. All the propositions hitherto
made are therefore applicable to systems with concealed motions,
if we understand by masses, coordinates, etc., all its masses,
coordinates, etc. Thus alterations are only necessary when
we restrict our propositions to the visible quantities. The
problem can therefore be reduced to specifying what altera-
tions our previous propositions must undergo, when by masses,
coordinates, etc., we mean visible masses, coordinates, etec.,
only.

598. 5. It is evident that whether the problem is stated
in the one form or the other, a solution cannot be obtained
without some data as to the effect which the concealed masses
produce on the motion of the visible masses. Such data are
possible. A guided system, or a system under the action of
forces, may be conceived as a system with concealed masses,
if we consider either the unknown masses of the guiding
system, or of the system producing the forces, as concealed.
In general, however, in these cases it is possible also to ascer-
tain physically the masses of the guiding system or of the
system which exerts the forces, and it then rests with
us to decide whether we regard them as concealed or not.
But at present we are mainly interested in cases where a know-
ledge of the concealed masses cannot be obtained by physical
observation.

599. 6. Continually recurrent motions, and therefore
cyclical motions, are frequently concealed motions; for these,
when existing alone, cause no change in the mass-distribution,
nor therefore in the appearance of things. Thus to all appear-
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ance the motion of & homogeneous fluid in a closed vessel
is concealed ; it is only rendered visible when its strictly
cyclical character is destroyed by the introduction of dust or
other such substances.

Conversely, concealed motions are almost always cyclical.
For motions which do not recur continually must sooner or
later produce a change in the mass-distribution, and therefore
in the aspect of things, and thus become visible.

600. 7. Even cyclical motions cannot long retain their
property of being concealed if we obtain means to affect the
individual cyclical coordinates, and produce changes in the
cyclical intensities. The manifold of our influence on the
system is in this case.as great as the actual manifold of the
system, and we can argue from one to the other. The case is
different, however, if any direct and arbitrary influence on the
cyclical coordinates is permanently excluded. This may happen
in adiabatic cyclical systems (§ 560), and in these we shall
rather have to seek the motions which are concealed from our
observation. .

We therefore restrict our consideration of concealed
motion in the first place to such cases. Our treatment, how-
ever, has the effect that even in these cases we treat the
concealed motions as though they were visible, and only
investigate subsequently which of our propositions are still
applicable notwithstanding that they are now supposed to be
concealed.

Conservative Systems

601. Definition 1. A material system which contains no
other concealed masses than those which form adiabatic cyclical
gystems is called a conservative system.

The name is derived from a property of these systems
which will appear later; at present it is sufficiently justified by
its connection with the already established usage of mechanics.

602. Observation. Every conservative system may be
regarded as consisting of two partial systems, of which one
contains all the visible masses, the other all the concealed
masses of the complete system. The coordinates of the

Q
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visible partial system, .. the visible coordinates of the com-
plete system, are at the same time parameters of the concealed
partial system.

‘We shall denote the mass of the visible partial system by
m, its coordinates by p,, and its momenta along p, by ¢, The
mass of the concealed partial system will be denoted by m,
its coordinates by y,, and its momenta along these coordinates
by LR

603. Definition 2. By the force-function of a conserva-
tive system is meant the force-function of its concealed partial
system (§ 563).

The force-function of a conservative system is thus in
general given as a function of the vigible coordinates and
constant quantities, without any explicit statement of the con-
nection between these constants and the momenta of the
cyclical partial system. The form of this function is'subject
to no restriction by our considerations.

We shall denote the force~function of a conservative system
by U.

604. Note. In order to fully determine the motion of
the visible masses of a conservative system it is sufficient to
know its force-function as a function of its visible coordinates,
and this knowledge renders any further knowledge of the con-
cealed masses of the system unnecessary.

For the forces which the concealed partial system exerts
on the visible one can be completely obtained from the force-
function in the given form, and these forces replace completely
effect of the former on the latter (§ 457 e seq.).

605. Definition 3. That part of the energy of a conser-
vative system which arises from the motion of its visible
masses is called the kinetic energy of the whole system. In
opposition thereto the energy of the concealed masses of the
system is called the potential energy of the whole system.

Kinetic energy is also called vis viva (lebendige Kraft).
According to another and older mode of expression this term
denotes twice the kinetic energy.

606. Notation. We shall denote the kinetic energy by
T. T is thus a homogeneous quadratic function of p, or of g, ;
the coefficients of this function are functions of p,, We shall
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denote the partial differential of T by 9,T when we regard p,
and p, as variables independent of one another, but by 3,T when
we regard p, and g, as variables independent of one another.

The energy of the concealed cyclical partial system, <.e. the
potential energy of the whole system, may be denoted as
previously (§ 553) by ¢&.

607. Observation. The kinetic and the potential energy
of a conservative system do not differ in their nature, but
only in the voluntary standpoint of our conception, or the
involuntary limitation of our knowledge of the masses of
the system. That energy, which from one particular stand-
point of our conception or knowledge is to be denoted as
potential, is from a different standpoint of our conception or
knowledge denoted as kinetic.

608. Oorollary 1. The energy of a conservative system
is equal to the sum of its kinetic and potential energies.

We shall denote the total emergy of the conservative
system by E, and we thus have

E=T+ .

609. Oorollary 2. In a free conservative system the sum
of the potential and kinetic energies is constant in time, As
the kinetic energy increases the potential energy decreases, and
conversely (§ 340).

610. Corollary 3. In a free conservative system the
difference between the kinetic energy and the force-function
is constant in time; the kinetic energy and the force-function
increase and decrease simultaneously and by the same amount
(§ 566).

611. Definition 4 We shall call the difference between
the kinetic energy and the force-function of & conservative
system the mathematical or analytical energy of the system.

‘We shall denote the mathematical energy by A It differs
from the energy of the system only by a constant which is inde-
pendent of the time and the position of the system, but is in
general unknown. In mathematical applications it may com-
pletely take the place of the energy, but it lacks the physical
meaning which the latter possesses.
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612, Observation. The definition is represented by the

equation

T-U=h (@,
or

U+A=T (ii).

If the conservative system is free, then the quantity % in
this equation is a constant independent of the time, and the
equation is then called the equation of energy for the conserva-
tive system.

From (ii) and § 608 we obtain the relation

U+h=E—E& (iii).

613. Definition 5. The time-integral of the kinetic energy
of a system, taken between two definite times as limits, is called
the action or “expenditure of power ” (Kraftaufwand) between
the two times.

The action in the motion of a cobservative system during
a given time is thus represented by the integral

e

taken between the initial '&nd final values of that time.

614. Observation 1. If ds denotes a path-element of the
visible partial system, and v its velocity in its path, then the
action can be represented in the form of the integral

1
—mf'vds
2

taken between the positions in which the system is found at
the beginning and end of the time considered.

615. Observation 2. The name “action” (Wirkung)
for the integral in the text has often been condemned as un-
suitable. It is not easy to see, however, why the term “ex-
penditure of power,” invented by Jacobi, is better; nor why the
term (action) originally chosen by Maupertuis should be pre-
ferred. All these names suggest conceptions which have nothing
to do with the objects they denote. It is difficult to see how
the summation of the energies existing at different times could
yield anything else than a quantity for calculation, and it is
not only difficult, but impossible, to find a suitable name, of
simple meaning, for the integral in the text.
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The other terms and notations introduced in this chapter
are also justified less by their essential suitability than by
the necessity of employing as much as possible the existing
terms of mechanics.

Differential Equations of Motion

616. Problem. To form the differential equations of
motion of a conservative system. .

The solution of the problem consists only in specifying the
equations of motion for the visible partial system. The mass
of this portion is m, its coordinates p,; let the % equations

Depp, =0 )
1

be its equations of condition. Since the p,’s are at the same
time the parameters of the concealed partial system, the com-
ponents of the force which it exerts on the visible partial
system are equal to 9U/dp, (§ 563). Let an additional force
act on the visible partial system on account of a coupling with
other visible systems and let P, be its components. Then the
equations of motion of the system are by § 481

mf,+ E 2P, = 3?, Uip, (i),

and these » equatlons, together with the % equations (i), are
sufficient for the unique determination of the » 4- & quantities 3,
and P,

61'7. Observation 1. If the conservative system is free,
then no external forces act on it, and the P,'s are zero; the
equations of motion thus take the form

_ou
me"’EXPxP x ';‘

(4
618. Observation 2. In particular, if the coordinate p, is
a free coordinate of the visible partial system, then the equa-
tion of motion for the index , takes the form

mf, =z
o= o,
since then all the p,’s vanish.
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619. Observation 3. If we substitute in the equations
§ 616-618 for the accelerations along p, their different ex-
pressions from § 291, we obtain for these equations a series of
different forms corresponding to the forms which we obtained
for a completely known system in § 368 et seq.

620. Corollary 1. Ifin a holonomous conservative system
all the p,’s are free coordinates, and we put for short

T+U=1IL,

then the equations of motion of the system may be expressed in
the form of the 27 equations

T
q,=% )
Q, = 'aa;T]: (li),

which may be regarded as so many differential equations of the
first order for the 27 quantities p, and g, and which, with
given initial values,singly determine the course of these quantities.

For if we substitute the value of L, develop the partial
differential coefficients and remember that U does not contain
P, and thus that

op, %, o,

then we recognise that the equations (i) coincide with the relation
between g, and p, which follows from the definitions, but that
the equations (ii) coincide with the equations of motion in the
form § 618 (§§ 289, 291).

621, Observation. The function L, by whose use the differ-
ential equations of motion take the simple form of the equa-
tions § 620 (i) and (ii), has been called Lagrange’s function. This
function consequently exists only for a holonomous system, and
it is here equal to the difference between the kinetic and
potential energies, except for an arbitrary constant.

622. Corollary 2. If in a holonomous conservative
system all the p,'s are free coordinates, and we put for short

T-U=H,
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then the equations of motion can be expressed in the form of
the 27 equations

o, H .
Pp= 3"5 @
4= —%;? (i),

which may be regarded as so many partial differential equa-
tions of the first order for which the 27 quantities p, and g,
and which with given initial values, singly determine the course
of these quantities.

For if we substitute the value of H, and remember that
U does not contain g, and consequently that

W _, oU_9U0
an %ﬁ apP

we see that the equations (i) represent the relation between g,
and p, resulting from the definitions; while the equations (ii)
coincide with the equations of motion (§ 618) deduced from
experience (§§ 290, 294).

623. Observation. The function H, through whose use
the equations of motion take the simple form given in § 622
(i) and (ii), is known as Hamilton’s function. This function
therefore exists only for a holonomous system, and for such a
system is equal to the sum of the potential and kinetic
energies, except for an arbitrary constant; it is also equal to
the total energy of the system, except for an arbitrary constant.

In general it is permissible to define Hamilton’s function
for a system with any, not necessarily cyclic, concealed motions,
by the equations § 622 (i) and (ii), 4.e. as a function of the
visible p,’s and ¢,’s through whose use (assuming there is such
a function) the equations of motion take that simple form.
With this more general definition, Hamilton’s function is not
always equal to the sum of the kinetic and potential energies.

624. Note. From the equations § 620 and § 622 the
same reciprocal properties can be obtained for a system with
concealed cycles as were deduced in § 378 and § 381 for a
completely known system. This is unnecessary, but it is implied
in these relations that each of them is valid quite independ-
ently of whether the coordinates, momenta, etc.,, appearing in
them are visible or concealed coordinates, momenta, etc.
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Integral Propositions for Holonomous Systems

625. Note 1. The integral

4

[e-o

to
for the motion of a free holonomous system with concealed
adiabatic cycles between sufficiently near positions 0 and 1
is smaller for the natural motion of the system than for any
other possible motion by which both the visible and concealed
coordinates pass in the same time from their initial to their
final values.

For since T~TU is equal to the energy of the system,
increased by a constant which is the same for all possible
motions, the note is the same as proposition § 358 expressed
by means of the notation just adopted. .

626. Observation 1. If the restriction that the ﬁnal posi-
tions should be sufficiently near is removed, then it can only
be asserted that the variation of the integral vanishes in a trans-
ition to any one of the other motions considered. Using the
_ notation of § 590 the statement takes the form that

s,f(T-U)dt=o,

in a transition from the natural motion to any other possible
motion, when the variations of the initial and final times as
well as the initial and final values of the visible coordinates
vanish (cf. § 359).

627. Observation 2. Note 1 distinguishes the natural
motions from every other possible motion, and may therefore
be used to determine the natural motion if it is actually
possible to form the variation of Observation 1. But if,
as is assumed, the cyclical coordinates are concealed, then the
formation of variations of the form 0, is not possible, and the
note, although still correct, becomes inapplicable.

628. Proposition 1. The integral

- ——
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j(T+U)dt
) .

in the motion of a free holonomous system with concealed
adiabatic cycles between sufficiently near positions of its
visible masses is smaller for the natural motion than for any
other possible motion which, in the same time and with the
same momenta of the concealed cyclical motions, carries the
visible coordinates from the given initial to the given final
values.

The proof can be obtained by reference to Note 1, § 625.
For this purpose we associate (as is possible by § 592) each one
of the varied motions required by this proposition, with a second
in which the visible coordinates undergo the same variation,
but in which the cyclical momenta vary in such a manner
that the initial and final values of the cyclical coordinates
remain unaltered. We must denote, according to § 590, a
variation by a transition to a motion of the first kind by &, and a
variation to the corresponding motion of the second kind by 8.

Now, firstly, since T depends on the visible coordinates
alone,

5, f Tdt =3, f Tdt ().

Secondly, since the duration of the motion is not varied,
and — U differs only by a constant from the energy of the
cyclical motion (§ 566), we get by § 593

3 f Udt= -3, f Udt (ii).
Adding (i) and (ii) we get
8,J(T +U)dt = S,I(T - U)dt (iii).

Now by §§ 626, 625, the variation on the right-hand side
has for the natural motion always a vanishing value, and for
sufficiently near final positions a necessarily negative value,
and therefore so has the variation on the left-hand side. Con-
sequently the integral on the left has a minimum value for
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the natural motion between sufficiently near final positions ;
which proves the proposition.

629. Observation 1. If the restriction to sufficiently
near positions is omitted, then it can only be asserted that the
variation of the integral vanishes. The analytical expression
for this statement is in our notation (in contradistinction to the
statement of § 626)

4

8.f(T+U)dt=0.
to

630. Observation 2. The property of the natural motion
stated in the proposition distinguishes it without ambiguity
from every other possible motion. The variation &, can be formed
even though the cyclical motions are considered concealed ; for
its formation only requires that the constants appearing in the
force-function should be left unvaried. The proposition can
thus be used for the determination of the natural motion of
conservative systems, Its validity is rigorously limited to
holonomous systems, :

631. Observation 8. The above proposition (§ 628) em-
ployed as in § 630 bears the name of Hamilton’s Principle.
Its physical meaning can in our opinion be no other than
that of proposition § 358, from which we have deduced the
principle. The principle represents the form which must
be given to proposition § 358 in order that, notwithstanding
our ignorance of the peculiarities of cyclical motion, it should
remain applicable to the determination of the motion of the
visible system.

632. Note 2. If we denote by ds a path-element of the
visible masses of a free holonomous system which contains
concealed adiabatic cycles, then the integral

1
ds
NU+h
0
in a motion between sufficiently near positions 0 and 1 is

smaller for the natural paths of the system than for any
other possible paths by which the values both of the visible
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and cyclical coordinates pass from the given initial to the
given final values. The quantity % is here to be considered a
constant varying from one natural path to another, while for all
the paths compared at any instant it is to be regarded as the
same constant.

For if we introduce the time and make the arbitrary but
permissible assumption that the system traverses the paths
under consideration with a constant velocity, this being such
that the constant 2 denotes the value of the analytical energy,
then
1 ds
3"
and thus the integral considered is equal to

4
ﬁ f dt.
m
t

The integral, except for the coefficient, is therefore equal
to the duration of the motion. But this, by § 352 regarded
as a consequence of § 347, is a minimum for a given value of
the energy, t.e. of the constant . Hence the content of this
note is identical with that of proposition § 352, but is ex-
pressed by means of the notation since introduced.

633. Observation 1. If the restriction that the positions
should be sufficiently near is omitted, then the vanishing of
a variation only can be asserted: in our notation this state-

ment is represented in the form
1

3, ds—O
o TR
[

634. Observation 2. By means of the property stated in
Note 2, the natural paths, which correspond to different values
of the constant %, are uniquely distinguished from all other
possible paths; and the proposition may be used for the deter-
mination of the natural paths of the system, if it is possible
to form the variation §,. If, however, as is assumed, the
peculiarities of the cyclical motion are concealed, then it is
not possible to form this variation, and the note, although still
correct, ceases to be applicable to the purpose in question.
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635. Proposition 2 In the motion of a free holonomous
system which contains concealed adiabatic cycles, between two

sufficiently near positions 0 and 1 of the visible masses, the
integral

f~/U+—hds

0
is smaller for the natural paths than for any other possible
paths by which, with the same values of the concealed cyclical
momenta and the constant %, the visible coordinates pass from
the given initial values to the given final ones.

We again give the proof by a reference to the foregoing
note (§ 632). For this purpose we introduce the time, and
make the arbitrary but permissible assumption that the system
traverses the paths considered with constant velocity, this
being such that the constant % is equal to the mathematical
energy. The integral can then be written in f;he form

[I(U+h)dt

Further, we again a.ssocmte as is permissible by § 592,
each one of the varied motions mentioned in the proposition with
a second in which the visible coordinates undergo the same
variation, and in which the constant %, and consequently the
energy E, remains unaltered; the cyclical momenta must,
however, vary in such a manner that the initial and final
values of the cyclical coordinates retain their original values.
A variation corresponding to the requirements of the proposi-
tion we shall again denote by 8, and a variation corresponding
to the second motion by 3,

Now, firstly, for any variations &, of the cyclical
momenta g, (§ 566)

sf(U+h) dt=8J(U+h) dt+2tpfa(g;h)8q,dt

= Sqf(U+h)dt - %Et; R

thus in particular for a variation §,
1 Printed as in the original MSS.—Eb.

PR T



-

cege——-

v CONSERVATIVE SYSTEMS 237

5, f (U +h)de =8, f (U+h)dt-,}2:ﬁ,a,q, G).

Secondly, we obtain from the equation § 612 (jii), remem-
bering the relation § 588 and the constancy of E,

f (U + h)dt = E(t, ) — 52'» B

- thus by a variation of the kind &,

5, f (U-+ At =Bt~ 1)~ 4 550 (i)
Subtraction of (i) and (ii) gives

3 f (U + )t = E3 (¢, —¢,) (iii) ;

or when, by aid of § 632 (i), we again eliminate the time,

1 1
—— ds
sJ ~/U+]uls=E8,f — (iv).
) oZ7U+h |

The variation on the right has always, by § 632, for the
natural motion a vanishing, and for sufficiently near posi-
tions a negative value; and hence, since E is necessarily
positive, the same holds for the variation on the left. The
integral on the left has thus, for the natural motion and
for sufficiently near final positions, a8 minimum value, which
proves the proposition.

636. Observation 1. If the restriction that the positions
should be sufficiently near is removed, then it can only be
asserted that the variation of the integral vanishes, The
analytical expression of this statement is in our notation (in
contradistinction to § 633)

8.,[./(U+h)ds=o.

637. Observation 2. For every value of the constant 4
the proposition distinguishes without ambiguity a natural path
from all other possible paths. The property of natural
paths which the proposition states, may therefore be used for
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the determination of these paths; it can even be used if the
cyclical motions are assumed to be concealed.

For the formation of the variation 8, only requires that the
constants appearing in the force-function should remain un-
altered ; the variation can thus be formed notwithstanding our
ignorance of the peculiarities of cyclical motion.

638. Observation 3. Proposition 2, employed in the con-
ception of the last observation, is Jacobi’s form of the Principle
of Least Action. For if, for the moment, we take m, to be the
mass of the vth of the visible points of the system, ds, an
element of the path of this point, then

mds® = zvm,ds,’,
1

and thus the integral for which we establish a minimum value
is, except for coefficient,
f NU+ hJ Dvmds,?,
1
which (again excepting a constant coeflicient) is Jacobi’s integral.

The physical meaning of Jacobi’s Principle we conceive to
be no other than that contained in propositions § 352 or § 347,
from which it is deduced. It represents the form which we
must give to that proposition in order that, notwithstanding
our ignorance of the peculiarities of cyclical motions, it may
be applicable to the determination of the motion of the visible
system. The validity of Jacobi’s Law is also confined to
holonomous systems.

639. Proposition 3. In the motion of a free holonomous
conservative system between sufficiently near positions, the time-
integral of the kinetic energy is smaller for the natural motion
than for any other possible motion which carries the system
from the given initial to the given final values of the visible
coordinates, and which is performed with the same given
value of the mathematical energy which is constant with regard
to the time.

For if we take % to be the given value of the mathematical
energy, then for all the paths considered (§ 611)

T—-U=k,
and thus the integral of which the proposition treats, viz.
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4

Tds,

b

is (except for a constant coefficient) the integral of which Pro-
position 2 treats; the present proposition is thus only another
mode of expressing the content of that proposition.

Observations similar to Nos. 1 and 2 after Proposition 2
are also applicable here.

640. Observation. Proposition § 639 expresses the Prin-
ciple of Least Action as originally stated by Maupertuis. This
form is preferable to Jacobi’s in that it can be expressed more
simply, and therefore appears to contain a simple physical
meaning. But it has the disadvantage that it contains the
- time unnecessarily, inasmuch as the actual statement only
determings the path of the system and not the motion
in it; this motion being rather determined only by the
note which is added, viz. that only motions with constant
energy will be considered.

Retrospect to §§ 625-640

641. 1. From our investigations we see that, for the
natural motion of a free conservative system, each one of the
integrals

f (T— U, f (T+ U,

f Tde,

takes a special value under determined conditions. While the
two upper integrals relate to the motion of the system, the
others refer only to the path. The two integrals on the
left relate to the case when all the coordinates of the system,
even the cyclical ones, are considered, and when only those
positions of the system are considered the same in which the
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latter coordinates as well as the former have the same values.
The remaining integrals relate to the case when the cyclical
coordinates are concealed, and when those positions of the
system are considered the same in which the visible coordinates
have the same values. The consideration of the last integral
assumes the validity of the Principle of the Conservation of
Energy; the consideration of the two upper ones allows the
deduction of this principle ; the two middlg ones can be
considered independently of this principle.

642. 2. The physical meaning of the two integrals on the
left is extremely simple; the statements expressing them are
immedjate consequences of the fundamental law. The integrals
on the right have lost their simple physical meaning; but the
statement that they take special values for the natural motion
always represents a form of the fundamental law, even though
it be complicated and obscure. This has happened because the
law has been adapted to complicated and obscure hypotheses.
The statement which relates to the last integral has an
illusory appearance of an independent and simple physical
meaning.

Our method of proof was not chosen with a view to being
as simple as possible, but to making the above relations stand
out as clearly as possible.

643. 3. That Nature is not constituted so as to make
any one of these integrals a minimnum, is seen firstly from the
fact that even in holonomous systems with a more extended
motion a minimum does not always appear; and, secondly,
from the fact that there are natural systems for which the
minimum never appears, and for which the variation of these
integrals never vanishes, An expression comprehending all
the laws of natural motion cannot therefore be assigned to
any of these integrals; and this justifies us in regarding the
apparently simple meaning of the last integral as illusory.

Finite Equations of Motion for Holonomous Systems

644. Note 1. Let us denote by V’ the value of the
integral
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1
Sifztn
2) NU+R
0

taken for the'natural path between two value-systems of all
the coordinates of a free holonomous system with adiabatic
cycles, regarded as a function of the initial and final values
of these coordinates, ie. of p., p,, and P, P,, and the
quantity % ; then the expression

- J 2E
m+m
represents the straightest distance of the system. The dtation
is the same as we have used previously in this chapter.
By § 632 V' is equal to the duration of the natural motion
between the given positions, for the mathematical energy k.

If then S is the straightest distance between the two positions,
we get

E S
from which the proof follows.

645. Oorollary. By means of the function V’ the natural
paths of the system considered may be represented in a concise
form.

For if ds denotes an element of the path of the visible
partial system, and dg a similar quantity for the cyclical
partial system, and do for the complete system, then

(m + m)do* = mds* + mdg® @),
and therefore (§ 57) with the previous notation

Ao = D Dol dpet Dp Do g, .

m+m

If al’;)‘, and a',;]‘, are the angles which the path of the com-
plete system makes with the coordinates p, and p, of that
system, then the equations of the natural paths, after division
of both sides by a constant factor, are obtained by §§ 224,
226 in the form

R
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Na, cosap, = %}E %)_‘Z (iii)
Va8 g, = — 3}‘% .
Viponoga= \J2 I ®
VL N %E (vi)

and these equations admit of a dual interpretation, namely,
either that they give the equations of the natural paths as
differential equations of the first order or as equations of a
finite form.

646. Observation. The foregoing equations (iii) to (vi) are
correct in all cases, whether we regard the cyclical coordinates
as visible or concealed. They cease, however, to be applicable
if the latter be the case; for then the complete expression
for V/ is unknown and the equations cannot be developed.

647. Problem 1. To transform the foregoing equations of
motion of a free holonomous system so that they remain
applicable even when the cyclical motions of the system are
concealed. .

We denote by V the value of the integral

1

2m j T s,

taken for the natural path between two value-systems of the
visible coordinates. In the determination of this natural path
we shall regard the cyclical momenta in the force-function as
invariable constants; V will therefore be considered a function
of -the initial and final values alone of the visible coordinates
and the constant k. By § 635 (iv), for the transition from one
natural path to another with visible coordinates varied in any

manner,
1 1
_ S m ds .
8 ~/2mf NUFhds= 2E8"\/;IW—T7L (),
H 0
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so that, in particular, in a transition from one natural path to
any neighbouring natural path

V= 2E8,V’ (ii),
therefore
/2
WV _ gV
ag;v a;:,;, _ (ii).
s—= D)
s

By the help of these equations we can eliminate the
cyclical coordinates from the right-hand sides of the equations
. § 645 (iii) and (iv). Then for the left-hand sides we have

A

to replace the angle op, by the angle spp We then have, by
§ 645 (ii) (§ 75),

l/ Na d @
m+m 7008 0P, = 2m+m "dp,

(>iv),
Tm + m
and further, from the equations
s
U+h=T=
* i’md—t
and ).
E=
3om +m)22; 7
by division
E .
do=_ [T _ [_~ ds vi);
7 “/ m+mV U+4 D
thus from (iv) and (vi)
cos o, = J U gkcos 87, (vii).

If now we substitute the mﬂt (iii) on the right, and the
result (vii) on the left of the equations to be transformed, we

obtain the equations
ov

aa. . Ccoss, = 1 -
o Fn = ; 2m(U + &), P’
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1 ov oo
& Qg COS 8Py = — 2m(U + h)o 7 (Vlll),

which are the required transformations. For they no longer
contain any quantities which refer to the concealed partial
system, and they admit the dual interpretation that they present
the natural paths of the visible partial system as differential
equations of the first order, or in a finite form.

648. Observation 1. The function V does not contain
the time and gives only the natural paths of the system, but
not its motion in these paths. But since the natural paths are
traversed with constant velocities, and we have already assigned
the interpretation of analytical energy to the constant % appear-
ing in V, it is easy to introduce the time as an independent
variable in the equations. In the first place, the connection
of the time with the length of the path, previously regarded as
the independent variable, is given by the equation

1
ov m [ ds .
— — = —t . .
%Nz T T ¥
0

Thus we obtain after multiplication of the equations § 647
(viii) by

Zm(0 ¥ 7) = A/ 2mT =m%

dt
and using § 75 and § 270,
ta= o (i)
? appl
ov
90 = —3;; (idi).

Finally, we obtain for the value of the function itself,
4
V=2 f Tdt @iv).
)

In form these equations are much simpler than the
equations of the foregoing problem, but the former have the
advantage of containing one less independent variable.
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649. Observation 2. The function V is the same function
as Hamilton denoted by a similar symbol, and is known as
the characteristic function of the conservative system. This
statement agrees with that of § 412, for by the assumption
made there that all coordinates were visible, the function
here denoted by V is transformed into the function there
denoted by the same symbol.

Finally, it appears that the characteristic function of a
system, according to the now extended definition, is a quantity
for calculation without any physical meaning. For, according
as we treat greater or lesser parts of cyclical motions as
concealed, we may write down different characteristic functions
for the same system; and these serve the same purpose
analytically although they possess different values for identical
motions of the system.

650. Proposition. The characteristic function V of a
conservative system satisfies the two partial differential equa-
tions of the ﬁrst order

2»2 a‘;" N (U,

22 5 _V ﬂ_(vm)o

which correspond to the d.lfferentlal equations § 227 for the
straightest distance.

For these equations are obtained by the substitution of the
direction cosines from the equations § 647 (viii) in the equation
§ 88, which these direction cosines satisfy.

651. Note 2. If we denote by P’ the value of the in-
tegral

0

taken for the natural motion between two value-systems of
all the coordinates of a free holonomous system with adiabatic
cycles, and considered as a function of these values and the
duration of the motion, then P’ differs from the principal
function of the system (§ 415) only by the product of the
duration of the motion and an (unknown) constant.
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For T — U differs from the energy of the system .only by
an (unknown) constant. :

652. Qorollary. With the aid of the function P’/ the
natural motions of the system can be expressed in a concise
form. :

In fact the difference between P’ and the principal function
defined in § 415 does not prevent the immediate application
of the equations § 414 (ii) and (iii), so that we obtain as
equations of motion

op’ .
gm = apTﬂ (1)
op/ .
q 0 = - a’-T-m (ll)
oP’
In a_l.’; (iii)
oP' @iv).

Dn the other hand the equation § 414 (iv) requires a slight
modification; we obtain instead of it

h=—— =—.
o, ot

653. Observation. The foregoing equations (i) to (iv)

are correct in every case, whether all the coordinates are access-
ible to observation or not ; but they cease to be applicable when

the cyclical motions of the system are considered concealed.

654. Problem 2. To transform the foregoing equations of
motion of a free holonomous system, so that they remain appli-
cable even when the cyclical motions of the system are concealed.

We denote by P the value of the integral

f
f (T+U)dt,
A

taken for the natural motion between the two value-systems
of the visible coerdinates existing at the times f, and ¢,. In
the determination of this natural motion the cyclical momenta
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contained in the constants of the force-function will be con-
. sidered invariable, and P will thus be considered a function of
the initial and final values alone of these coordinates and of
the times ¢, and ¢,

Now, by § 628 (iii), for a transition from a natural motion
to any neighbouring motion of equal duration, the equation

Sqf(T+U)dt=8,f(T—U)dt

holds. If we apply this equation to the transition from a
natural motion to a neighbouring natural motion of equal
duration, we get
8P =8,F,
thus
) ) oP op

P P n O,

By means of these equations we eliminate the concealed
coordinates from the right of equations § 652. For the
left, it is sufficient to remark that the momentum g, of the whole
system along p, is also the momentum of the visible partial
system along p,, regarded as a coordinate of this partial system.
We then obtain as equations of motion of the visible partial
system

opP

I = a;; (i)’
opP ..
q oo ) a?m (11),

which are the required transformations.

655. Observation 1. The function P here introduced is
the function which Hamilton denoted by S, and is known as the
principal function of the conservative system, This statement
agrees with § 415, for by the assumption there made, that all
the coordinates are visible, the present function P transforms
into the function there denoted by the same symbol.

656. Observation 2. The value of the principal function
for a definite transference is related to the characteristic function
in a simple manner. For by a simple transformation we obtain
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4

f(T+U)dt=f(2U+h)dt
fe L)

1 1
[ — m [ hds
Thus (§§ 647, 644) ' '

P=V -t —1t) (@,
where we have to regard the quantity % introduced on the
right-hand side, in V and in the second summation, as a func-
tion of (¢, — ), p,, and p,.

Conversely,
V=P+h(t, —¢t) ' (ii),

where, on the right-hand side in P and in the second summa-
tion, the quantity (¢, —?,) is regarded as a function of %, p,
and p,.

657. Observation 3. The analytical energy 2 does not
appear in the principal function. Still it can be indirectly
deduced from it by means of the equations § 654 (i), (i),
§ 286 (iii) and § 612 (i). It can also be directly expressed
by means of P. For if we change on the right-hand side of
§ 656 (i) ¢, and ¢, but not p, and p,, and denote by dk the
change of 2 which necessarily results therefrom, we get

v
dP = %—hdh — hd(t, — L) — (¢, — to)dh,

and thus, by § 848 (i),

4P = = hd(t, — 1),
from which follows
B oP oP
o, o,
658. Proposition. The principal function P of a con-
servative system satisfies the two differential equations of the

first order
oP oP BP
—=TU
2m2 21 Map ap ot 1
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Po

which correspond to the differential equations § 227 for the
straightest distance.

For these equations are obtained when the analytical
energy % is expressed in terms of the differential coefficients
of P, the first time directly by means of § 657, and the second
time indirectly by means of § 612 (i) and § 654 (i), (ii).

" Retrospect to §§ 644-668

659. 1. In §§ 644-658 there are given four finite repre-
sentations of the motion of a holonomous system with adiabatic
cycles. In the first and third all the coordinates of the system
were considered capable of being observed, and in the second
and fourth the cyclical coordinates were treated as concealed.
The first and third representation, which led to the character-
istic function, essentially gave only the path of the system
and corresponded to the Principle of Least Action. The second
and fourth, which led to the principal function, gave the motion
completely, and corresponded to Hamilton’s Principle.

660. 2. All the four representations have the same
simple physical sense, and in all of them the cause of the
mathematical complexity is the same. The simple physical
sense consists in the fact that the natural paths are always
straightest paths, and in the purely geometrical connections of
these paths with the straightest distance in holonomous systems.
The cause of the mathematical complexity consists in this,
that we did not always treat in the same manner ‘all the
essential elements for determining the motion, but eliminated
some of them as concealed. We may also say that difference
in the treatment consists in the fact that for some coordinates
the initial and final values were the elements introduced, and
for others the initial velocities. Our course of investigation
was not adopted as being the simplest possible, but rather as
putting this relation as clearly as possible.

661. 3. Further representations of the motion of a



250 SECOND BOOK CHAP.

holonomous system could be given by eliminating other
coordinates, or by introducing for the visible coordinates
as well, not their initial and final values, but other quantities
as elements; or by proceeding from the partial differential
equations, § 650 or § 658, in the same manner as is
- done for the straightest distance in §§ 232 & seqq. Such
representations may in particular cases have certain mathe-
matical advantages, as Jacobi has shown in a comprehensive
manner. But the further one proceeds in this direction the
more is the physical meaning obscured under its mathematical
form, and the more the functions used take the character of
auxiliary constructions with which it is no longer possible to
associate a physical meaning.

Non-Conservative Systems

Explanations and Notes

662. 1. If a material system contains only such con-
cealed masses as are in adiabatic cyclical motion, then if the
visible coordinates are under our free control it is possible
at every instant to transform back the enmergy which has
become the energy of the concealed masses, into the energy
of the visible masses. The visible energy once residing in
the system may therefore be permanently retained as visible
energy.

It is on account of this property that we have called these
gystems conservative. For the same reason we denote the
forces exerted by the concealed masses of such systems as con-
servative forces.

663. 2. On the other hand, those systems in which we
cannot sufficiently control the visible coordinates so as to retrans-
form the concealed energy at every instant into visible energy
are called mnon-conservative, and the forces of their concealed
masses non-conservative forces. Non-conservative systems in
which the energy tends to change from the energy of the
visible masses into that of the concealed masses, but not
conversely, are called dissipative systems, and the forces due
to their concealed masses dissipative forces.
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664. 3. In general the systems and forces of nature are
non-conservative if concealed masses come into consideration.
This circumstance is a necessary consequence of the fact
that conservative systems are exceptions, and even exceptions
attained only more or less approximately (§ 550); so that for
any natural system taken at random the probability of its -
being conservative is infinitely small. Again we know by
experience that the systems and forces of nature are dissipative
if concealed masses come into consideration. This circumstance
is sufficiently explained by the hypothesis that in nature the
number of concealed masses and of their degrees of freedom is
infinitely great compared with the number of visible masses
and their visible coordinates; so that for any motion taken
at random the probability of the energy concentrating itself
in a special direction from that large number of masses into
this definite and small number is infinitely small.

665, 4. The difference between conservative and dissipa-
tive systems of forces does not lie in nature, but results simply
from the voluntary restriction of our conception, or the in-
voluntary limitation of our knowledge of natural systems. If
all the masses of nature were considered visible, then the
difference would cease to exist, and all the forces of nature
could be regarded as conservative forces.

666. 5. Conservative forces appear in general as differ-
ential coefficients of force-functions, t.e. as such functions of
the visible coordinates of the system as are independent of
the time. The non-conservative forces depend in general on
the first and higher differential coefficients of the visible co-
ordinates with regard to the time. With any given analytical
form of a force of either kind, the question may be raised
whether this form is consistent with the assumptions of our
mechanies, or the reverse.

667. To this question an answer cannot in general be
given; in particular cases it is to be judged from the following
considerations :—

(1) If it can be shown that there exists a normal con-
tinuous system which exerts forces of the given form, then it
is proved that the given form satisfies the postulates of our
mechanics.
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(2) If it can be proved that the existence of such a system
is impossible, then it is shown that the given form contradicts
our mechanics.

(3) If it can be shown that there exists in nature any
system which we know by experience to exert forces of the
given form, then we consider it thereby proved that the
given form is consistent with our mechanics.

If no one of the three cases happens, then the question
must remain an open one. Should such a form of force
be found as would be rejected by the second consideration, but
permitted by the third, then the insufficiency of the hypothesis
on which our mechanics reposes, and in consequence the
insufficiency of our mechanics itself, would be proved.



CHAPTER VI

DISCONTINUITIES OF MOTION

Ezplanations and Notes

668. 1. All systems of material points to which the
fundamental law in accordance with its assumptions is ap-
plicable must possess continuous connections. Hence the
coefficients of all the equations of condition of such systems
are throughout continuous functions of the position (§ 124).
This, however, does not prevent these functions from changing
very quickly near given positions, so that the equations have,
in positions very near to one another, coefficients which differ
by finite quantities.

669. 2. When the system considered passes through such
a position of very rapid change, then a complete knowledge of
its motion requires a complete knowledge of the equations
of condition during the rapid change itself. Certain statements
may, however, be made concerning the motion even when the
form of the equations of condition of the system is given
only before and after the place of its sudden change. If we
limit ourselves to this class of statements, then it is analytic-
ally simpler to pay no attention to the special manner of the
change, and to use the equations of condition as though their
coefficients were discontinuous. In this case the system is
regarded as discontinuous, owing to the voluntary limitation
imposed by our mode of treatment.

670. 3. But it may happen that while our physical means
permit us to completely investigate the connection of a system
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in other respects, they are vet insnfficient to investigate it at
the places of very sudden change, although we are convinced,
and indeed may physically prove, that even here this connection
is continuous. If this happens we are compelled to represent
the connection analytically as discontinuous, unless we
renounce the possibility of a single representation of it. In
this case the system must be regarded as discontinuous on
account of the involuntary limitation of our knowledge of the
system.

671. 4. Conversely, if the coefficients of the equations
of condition of a system are directly given as discontinuous
functions of the position, without a knowledge of how these
functions are obtained, then we assume that one of the two
cases previously mentioned happens. We regard the given
equations only as an incomplete and approximate presentation
of the true and continuous form. We therefore assume, from
this very fact, that a complete determination of the motion of
such a system is not required of us, but only the specification
of those statements which can be made notwithstanding the
incomplete knowledge of the system, with the supposition that
even in the positions of discontinuity the unknown connection
is in reality continuous. .

672. 5. If a system passes through a point of very rapid
change with a finite velocity, then its equations of condition
undergo finite changes in a vanishing time. If during the
whole change the system is in reality normal, as the funda-
mental law assumes, then, to all appearances, it ceases to be
normal at the instant of its passing through that position,
although this has not actually oocurred. Hence if a system
is given us analytically, and if its equations of condition are
independent of the time but at a certain moment instantane-
ously take a new form, then we consider the equations of
condition at this moment as only an approximate representa-
tion of another connection, unknown and perhaps more intricate,
but at the same time not only continuous but also normal.
Hence we assume again that a complete determination of the
motion of the system is not required of us, but only a specifica-
tion of those statements which, notwithstanding our ignorance,
can be made by means of the fundamental law, with the supposi-
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tion that even at the time of the discontinuity the true con-
nection of the system is continuous and normal.

673. 6. When we regard all positions and times of dis-
continuity in the foregoing manner we have renounced the
investigation of actually discontinuous systems. The funda-
mental law, too, would not be applicable to these. This
restriction, however, does not imply a refusal to investigate
any natural system whatever, for everything points to the
conclusion, that there are in nature only apparent, and not
actual, discontinuities. That the motion of systems through
apparent positions of discontinuity is not completely deter-
mined by the fundamental law alone, corresponds entirely with
the physical experience that the knowledge of a system before
and after a position of discontinuity is not sufficient to
determine completely the change of the motion during the
passage through that position.

Impulsive Forces or Impulses

674. Note. If a system passes through a position of dis-
continuity, then its velocity undergoes a change of finite mag-
nitude. The differential coefficients of the coordinates with
regard to the time suddenly jump to new values.

For immediately before and after such a position these
differential coefficients, and consequently the components of
that velocity, must satisfy linear equations with finitely different
coefficients.

675. Corollary 1. In a motion through a position of
discontinuity the acceleration becomes infinitely great, but in
such a manner that the time-integral of the acceleration taken
for the time of the motion retains in general a finite value.

For this time-integral is the change of the velocity which
in general is finite. .

676. Corollary 2. If the equations of condition of one
of two or more coupled systems are subject to discontinuity,
then in the motion through this discontinuity the force acting
between the systems becomes in general infinitely great, but
in such a manner that the time-integral of the force, taken
for the time of the motion, remains finite.
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For in general the components of the acceleration of the
discontinuous system along the common coordinates become
infinite in the sense of Corollary 1. But since the coefficients
of the equations of condition remain finite during the discon-
tinuity, the force is of the order of the acceleration.

677. Definition. An impulsive force or impulse is the
time-integral of the force exerted by one system on another
during the motion through a position of discontinuity, taken
for the duration of the motion through this position.

678. Observation. When all the systems considered have
finite velocities, finite and infinitesimal, but not infinite impulses,
may appear. In what follows we shall assume the impulses to
be finite.

679. Corollary 1. To every impulse there is always a
counter-impulse. It is the time-integral of the force which
the system regarded as the second exerts on the first.

680. Corollary 2. An impulse is always exerted by, as
well as exerted on, a system which suffers a discontinuity
of motion; it is not conceivable without two such systems
mutually acting on one another.

We may speak of impulses simply without expressly men-
tioning the systems which cause or suffer them, for exactly the
same reasons as we thus speak of forces,

681. Corollary 3. An impulse may always be considered
as a vector quantity with regard to that system which causes it,
as well as with regard to that system on which it acts, Its
components along the common coordinates are in general
different from zero ; its components along the coordinates which
are not common are zero; its components in directions which
cannot be expressed in terms of the coordinates used remain
undetermined.

For this statement holds for the force of which the impulse
is the time-integral.

682. Notation. If a system with the coordinates p, suffers

a discontinuity of motion, then we shall denote the components

along p, of the impulse which acts on the system, by J,. But
the components of the impulse which the system causes along
p, will be denoted by J,. For the second system whose co-
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ordinates are denoted by p,, the corresponding quantities will
be denoted by 3, and 3,’ respectively (cf. §467). Thus, then,
Jp = 5,',
3, = Jp,:
identically.

683. Proposition. An impulse and its counter-impulse
are always equal and opposite, <.e. their components along every
coordinate are equal and opposite whether we consider these
quantities as vector quantities with regard to the one system,
or with regard to the other system. .

For an impulse and its counter-impulse can also be re-
garded as is the time-integrals of force and counter-force (cf.

468).
§ With the notation employed the proposition is given by
the equation
Jy= =7,

_ ’
(I -3,-

Composition of Impulses

684. Proposition. If a system is simultaneously coupled
with other systems, then any impulse which the aggregate of
these systems exerts is equal to the sum of the impulses
exerted by the several systems.

For the proposition holds at every instant during the
impulses for the acting forces (§ 471), and therefore also for
their integrals, z.e. for the impulses.

685. Corollary. If impulses simultaneously act on the
same system or are exerted by the same system, they can be
compounded and resolved by the rules for the composition and
resolution of vector quantities. We speak of the components of
an impulse and of resultant impulses in the same sense as we
speak of the components of forces and resultant forces (¢f. §§
472-474).

686. Deflnition. An impulse which is exerted by or on
- single material point is called an elementary impulse.

687. Corollary 1. Every impulse which is exerted by
or on a material system can be resolved into a series of
elementary impulses (¢f. § 479).

8



258 SECOND BOOK CHAP.

688. Corollary 2 The composition and resolution of
elementary impulses are performed by means of the rules for
the composition and resolution of geometrical quantities.
(Parallelogram of impulses) (Cf.§ 478.)

Motion under the Action of Impulses

689. Problem 1. To determine the motion of a material
system under the action of a given impulse.

The solution of the problem consists simply in stating the
change which the velocity of the system suffers through the
impulse. Let the system considered be the same as in § 481;
let us denote by P, the components of the infinite force which
acts on the system during the impulse, then, by § 481, during
this time, \

mf,+ Dxp Py =P, @).
1
Multiply this equation by d¢ and integrate for the duration

of the impulse. Since the values of the coordinates during
this time are constant,

m f St =g, =g (ii),

where we denote quantities before the impulse by the index 0
and after by the index 1. We have further, by § 682,

Pdt=J, (iid),
and putting for short
f Pdt=J, (iv),

we obtain 7 equations of the form

k
q,.-q,.o+21xpx,.Jx =J, ().

Since the velocity of the system before and after the im-
pulse must satisfy the connections of the system, we obtain from

|
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the & equations of condition of the system, % equations of the
form :

2;1% (B —Bo) =0 (vi),

which, with the equations (v), may be regarded as % 4 7 unhomo-
geneous linear equations for the %+ » quantities 5, —p, and
J,p or f:or the k + 7 quantities g, — g, and J, ; and they .singly
determine these quantities, and therefore the change in the
velocity of the system.

690. Observation 1. If the velocity of the system before
the impulse is given, and thus the quantities ¢, and 7,, known,
then we may regard the r equations § 689 (v), together with
the % equations § 689 (vi), or, what is the same thing, the %

equations
r

2’1’»13 1= 0,
1
as 7+ k unhomogeneous linear equations for the r+ % quanti- -
ties , and J,, which singly determine these quantities, and
therefore the velocity of the system after the impulse.

691. Observation 2. If we use rectangular coordinates
and denote the component of the impulse along x, by I,, then
the equations of the impulse take the form of the 3» equations

i

m (G, — )+ ez, =1, @,

1

- which, with the ¢ equations deduced from the equations of

condition, namely,
8n

zyxw(ivl - z.yo) =0 (ii),

1

singly determine the 3n components #, —&,, of the change of
the velocity and the ¢ quantities I

692. Observation 8. If the coordinate p, is a free coor-
dinate, then the corresponding quantities p,, are zero, and the
equation of impulse relative to p, takes the simple form

9= %0 = Jp'
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If in a holonomous system all the coordinates are free,
then all the equations take this form, and the resulting » equa-
tions are sufficient to determine the r quantities ,, — p,,, Which
are known linear functions of the quantities g, — g,, imme-
diately given by these equations.

693. Corollary 1 (to § 689). In order to impress
suddenly on a system at rest a given possible velocity, it
is sufficient to apply to the system an impulse in the given
direction and equal in magnitude to the product of the given
velocity and the mass of the system.

For if g,, =0, and the given values of , satisfy the equa-
tions of condition, then the assumption

J =0
Jo=0n
satisfies the equations § 689 (v) and (vi).

694. Corollary 2. In order to bring a moving system
suddenly to rest in its instantaneous position, it is sufficient to
apply to the system an impulse opposite in direction and equal
in magnitude to the product of the velocity of the system and
its mass.

For if g, = 0, and if the quantities 7, satisfy the equations
of condition of the system, then the assumption

3, =0
Jo= =g
satisfies the equations § 689 (v) and (vi).

695. Propogition. The change of velocity which several
impulses, acting simultaneously, produce in a system is the
sum of the changes of velocity which the impulses, acting
singly, would produce.

All impulses are considered as acting simultaneously
which take place within a vanishing time, without regard to
their succession in this time.

The theorem follows (¢f. § 485) from the linear form of
the equations § 689 (v) and (vi), and it can also be regarded
as an immediate consequence of § 485.

696. Observation. The content of the foregoing pro-
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position may also be expressed by the usual statement that
several simultaneous impulses are quite independent as regards
the velocity which they produce.

697. Proposition. If the direction of an impulse is per-
pendicular to every possible displacement of the system on
which it acts, then the impulse produces no effect on the
motion of the system. And conversely: If an impulse pro-
duces no effect on the motion of the system on which it acts,
then it is perpendicular to every possible displacement of the
system.

The proposition may be regarded as an immediate con-
sequence of § 488, or it can be deduced from the equations
§ 689 (v) and (vi).

698. Note. Although the change of motion which an
impulse produces can be singly determined when we know the
impulse, yet the impulse cannot conversely be singly deter-
mined when we know the sudden change of motion which it
has produced.

699. Problem 2. To determine. the impulse which a
material system exerts in a given sudden change of motion.

As in § 682 we denote the components of the impulse by
J’, and by §§ 683 and 689 (v) these are

k
J,p= -qp1+qp0_ lxpprxo

In this equation g,, and g¢,, are determined by the data of
the problem, but the J,’s are not so given unless the motion of
the second system on which the impulse acts is also given. The
solution of the problem is thus not determinate, but contains
an undetermined summation which represents an impulse
perpendicular to every possible displacement of the system.

700. Observation 1. Although all the components of the
impulse which a system exerts in a sudden change of motion
are not determined by the change of motion of the system,
still all the components in the direction of a possible motion
are determined by this change.

701. Observation 2, Although all the components of the
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impulse which a system exerts in a sudden change of motion
are not determined by the change of motion of the system,
yet every component in the direction of a free coordinate is
singly determined by this change.

702. Observation 8. If p, is a free coordinate, then the
impulse exerted in the direction of this coordinate can be
written in the form

J’p= =9+ %

(D)
. app 1 app [
Internal Constraint in an Impulse

703. Note 1. If an impulse acts on a system of material
points between which no connections exist, it produces a change
of velocity whose direction is that of the impulse, and whose
magnitude is equal to the magnitude of the impulse divided
by the mass of the system.

704. Note 2. If connections exist between the points of
the system, then the change of velocity differs in general from
that given in the foregoing remark. The connections of the
system may thus be considered the causes of this difference.

705. Definition. By internal constraint, or constraint
simply, in an impulse, we mean the alteration which all the
connections of & system produce in the change of velocity of
the system due to the impulse.

The constraint in an impulse is measured by the difference
between the actual change of velocity and that change of velocity
which would take place if all the equations of condition of the
system were removed ; it is equal to the former diminished by
the latter.

706. Corollary. The constraint in an impulse is the

time-integral of the internal constraint of the system taken
for its whole duration.

707. Problem, To determine the constraint of a system
in an impulse.
We shall denote the components of the constraint along »,
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by Z, If then we multiply the equation § 497 (i) by mdt
and integrate for the duration of the impulse, we obtain

mz, =g, = g—9J, @).
The components along any coordinates are not in general
sufficient for the determination of the magnitude of the con-
straint. If, therefore, we wuse rectangular coordinates and
denote the component of the constraint along z, by Z,, we
obtain
mzv = mv(:i:yl - 2.7")) - Iv (i‘i) 5

then the magnitude Z of the constraint is the positive root of
the equation
8n
I 2
2= v /:i: -3 ——"> .
m 21 mv\ »1 w'o m'
708. Proposition 1. The magnitude of the constraint in
an impulse is smaller for the natural change of motion than it
would be for any other possible change of motion.
For the necessary and sufficient condition (¢f. §§ 155, 498)
that with given values of I, the quantity $mZ? should be a
minimum, is given by the 3» equatlons

mv(ivl vo) I + 2‘ waL -

where the quantities I, denote any undetermined multipliers,
and these with the ¢ equations

8n

Dy~ =0

singly determine the 3n+ ¢ quantities #,, —&, and I. But
since the equations coincide with the equations of motion
(§ 691) of the system, they are satisfied by the natural changes
of velocity, and only by these.

709. Observation. The foregoing theorem contains the
adaptation of Gauss’s Principle of Least Constraint to the
particular case of impulses.

710. Corollary. If, owing to the connections of the
system, the angle between an impulse and the change of
velocity caused by it is not zero (§ 703), then this angle is as
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small as possible, consistently with the connections of the
system.

For, if we draw a plane triangle whose sides represent the
magnitude of the impulse divided by the mass of the system,
the magnitude of any possible change of velocity and the
magnitude of the difference of these two quantities, that is to
say, the constraint which corresponds to this change of velocity,
then the angle e included between the first two sides represents
the angle between the impulse and the change of velocity (§ 34).
Now a possible change of velocity in a. given direction may
take all values; but amongst all the changes of velocity in
given directions, the natural one can only be that in which
the constraint is perpendicular to the change of velocity
(§ 708). If, then, we restrict ourselves to those changes of
velocity which are subject to this consideration, all the triangles
to be drawn are right-angled, and the hypothenuse is equal in
all and is given. But the side opposite to the angle ¢ is
smaller for the natural change of velocity than for any other
(§ 708); therefore, for this change of velocity the angle e itself
is & minimum, which proves the proposition.

711. Proposition 2. The direction of the constraint in
an impulse is perpendicular to every possible (virtual) dis-
placement of the system from its instantaneous position.

For by §§ 70%, 689, the components of the constraint can
be represented in the form

1 k
- 77!21" ppr i

Thus (§ 250) the constraint as a vector quantity is perpen-
dicular to every possible displacement of the system. The
proposition may also be immediately deduced from § 500.

712. 8ymbolical Expression. If we denote by &p, the
changes of the coordinates p, for every possible dis-
placement of the system, then the foregoing proposition can be
expressed in the form of the symbolical equation

2:(9;:1 ~Gp— Jp)spp =0 (i)’

which, for rectangular coordinates, takes the form
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3n
Drlmy i, —,0) — L1, =0 (ii)
1
(¢ §§ 393, 501).
713. Observation. The foregoing proposition (§ 711)
contains the adaptation of d’Alembert’s Principle to the par-

ticular case of impulses, and the symbolical form § 712 is the
usual expression for this adaptation.

714. Corollary 1. 'The component of the change of
motion in the direction of every possible motion produced by an
impulse is equal to the component of the impulse in that
direction divided by the mass of the system.

715. Corollary 2. The component of the change of
motion produced by an impulse in the direction of every free
coordinate is equal to the component of the impulse along
this coordinate divided by the mass of the system.

716. Corollary 8. The component of the velocity along
every coordinate of absolute position changes by an amount
which is equal to the component of the impulse acting in that
direction divided by the mass of the system—whatever be the
connections of the system,

717. Observation, Without any knowledge, or without
a complete knowledge of the connection between the masses of
a system, we can always find six equations for the motion of a
system under the action of an impulse. If we choose as co-
ordinates of absolute position the six quantities a,, a,, a,, @,
o, ©, introduced in § 402, then the six equations which
we obtain represent the adaptation of the Principle of the
Centre of Gravity and of Areas to the particular case of
impulses. ‘

Energy, Work

718. Definition. The increase of the energy of a system
produced by an impulse acting on the system is called the
work of the impulse.

Any decrease of the energy owing to an impulse is regarded
as a negative increase. Thus the work of an impulse may be
positive or negative.
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719. Corollary. The work of an impulse is the time-
integral of the work performed by that force whose time-
integral is the impulse.

720. Proposition. The work of an impulse is equal to
the product of the magnitude of the impulse and the com-
ponent in its direction of the mean value of the initial and
final velocities of the system.

For whatever may be the actual values of the force acting
during the time of the impulse and the motion of the system
during this time, the final motion, and consequently the work
of the impulse, will be the same as though the force acted with
a constant mean value in the direction of the impulse. Now,
if we make this simple assumption, then, firstly, the magnitude
of the force acting is equal to the magnitude of the impulse
divided by its duration. Secondly, the velocity changes uni-
formly from its initial to its final value, and its mean value is
the arithmetic mean of the initial and final values. The com-
ponent of the portion of the path described during the impulse
is, however, equal to the component of that mean value, multi-
plied by the time. Then, if we calculate by § 513 the work
performed by the force during its time of application, 4.e. the
work of the impulse, the time drops out and the proposition
follows.

721, Observation. With the notation hitherto used, the
analytical expression for the proposition is the statement that
the work of the impulse is equal to

3 03, (9 + po)-
1

722. Corollary 1. The work of an impulse is equal to
the product of the impulse and the component of the original
velocity taken in its direction, increased by half the product of
the magnitude of the impulse and the component in its direc-
tion of the change of velocity produced by it.

The analytical expression for this is that the work of the
impulse is equal to

PISEIRR PILEC g

1

which coincides with § 721.
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723. Corollary 2. The work of an impulse which sets
in motion a system at rest is equal to half the product of the
impulse, and the component in its direction of the velocity
produced by it.

For if the quantities 7,, are zero, then the work of the im-
pulse is

r
%Z" I oBp:

724. Proposition. If a system at rest is set in motion
by an impulse, then it moves in that direction in which the
impulse performs the most work, ze. in which it performs
more work than it would if it were compelled to move in any
other direction by additional connections. (The so-called
Bertrand’s Law.)

For if J is the agnitude of the impulse, » that of the
velocity produced, and e the angle between them, then for
every original or additional connection we have by § 714

J
v=— oS ¢
m

Thus the work of the impulse is by § 723 equal to
2
$Jv cos e=-2JRcos’ e

But the angle e for the natural action of the impulse takes
(§ 710) the smallest value consistent with the original connec-
tion, and consequently ¢ can only be increased by any addi-
tional connection, 4. cos’®e decreased, which proves the
proposition.

725. Corollary. The energy which an impulse on a
system at rest produces in that system is greater the fewer the
connections of the system. The greatest possible value of that
energy, which, however, can only be attained by dropping all
the connections, is equal to the square of the magnitude of the
impulse divided by twice the mass of the system.

Impact of Two Systems

Explanations

726. 1. We say that two systems impinge when they
behave as though they had been coupled for a very short time.
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We assume this coupling to be direct by assuming (§ 452) a
special choice of the coordinates of the two systems.

727. 2. We have to conceive such a temporary coupling
as a permanent coupling of the two systems with a third
unknown system which possesses the property that it in
general has no effect on their motion, but that in the im-
mediate neighbourhood of those positions in which certain
coordinates of the one system are equal to certain coordinates
of the other it constrains these coordinates to remain tem-
porarily equal. We call such coordinates the common coor-
dinates of the two systems.

728. 3. Before and after the impact the rates of change
of the coordinates of each of the two systems are subject simply
to the equations of condition of its own system. But during
the impulse the rates of change of the common coordinates are
also related by the equations of coupling. These rates of change,
then, just like the coordinates themselves, must during the
impulse have become respectively equal and must have re-
mained so for a time. But the time in which this takes place
we regard as vanishingly small, and what takes place during
this time as quite unknown. We consider the systems only
before and after the impulse, and expect that only such informa-
tion with regard to the impact will be required as can be given
without a knowledge of what takes place during the impact.

729. Problem. To determine the subsequent motion of
two impinging systems from their motion before the impact, as
far as is possible without a knowledge of what takes place
during the impulse. )

Let the quantities p, be the r coordinates of the one
system and {5, the 7 coordinates of the other. Let the number
of common coordinates be s. In the impact each of the
systems suffers an impulse; let the components of the im-
pulse on the first system be JP and on the second 3,,.
Quantities before and after the impulse will be distinguished
by the indices 0 and 1.

Now, in the first place, for all coordinates of the first
system equations of the form § 689 (v) hold good, and for all
coordinates of the second system corresponding equations. In
the second place, the impulses which the two systems suffer
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stand in the relation of impulse and counter-impulse, and
consequently for all common coordinates we have by §§ 682,

683,
Jo==3,

and for all the coordinates of the two systems which are not
common,
J,=0, 3,=0.

P

If now we combine the two relations we obtain for the s
common coordinates, s equations of the form

k ¢
9 — %0t Elxpprx = —0u+gu— 2" Podx D
1

while for the (r — s) + (r — s) coordinates which are not common,
r — 8 equations of the form

k
G — G+ DI =0 (ii)
1
and (tr —s) of the form
t
O = Qoo+ DxPrTy =0 (iif)
1

are obtained. The equations (i), (ii), (iii), together with the
k+%k equations of condition of the two systems, we may
regard as equations for the quantities ,, and J,,, which deter-
mine the motion of the system after the impulse, and for the
quantities J, and 3:( We have thus altogether r+1r —s+k+k
unhomogeneous linear equations which the r+4t¢+%+4% un-
knowns must satisfy and which contain the requirements of
the problem.

730. Observation. If the coordinates p, and p, are free
coordinates of their systems, then the equations of impact can
be written in a simpler form. By paying attention to the
common coordinates of the system, s equations of the form

q,)l + qpl = on + qpo (1)
will be obtained ; for the coordinates of the first system
which are not common, » — s equations of the form

9 = 9p9 (i) ;
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and for the coordinates of the second system which are not
common, T — 8 equations of the form

o = Geo (iti) ;
these give r <+t —s equations to determine the 7 4 t unknowns
Pp and .

731. Corollary 1. The motion of two systems after im-
pact is not completely determined by their motion before im-
pact and the general laws of mechanics, but its determination
requires also a knowledge of further relations obtained from
other sources. The number of these additional necessary rela-
tions is equal to the number of common coordinates during the
impact.

732. Corollary 2. If in an impact it is possible to
obtain, in addition to the relations deduced from the general
laws of mechanics, as many linear equations for the components
of the velocity after the impact as there are common coor-
dinates, then the motion after the impact is singly determined
by means of the previous motion.

733. Observation. The special relations which are neces-
sary for the determination of the motion in an impact, and
which do not spring from the general laws of mechanics,
depend on the special nature of that system which causes the
coupling and whose peculiarities are not known to us in
detail. It is this concealed system which takes up the
energy lost by the impinging systems, or which supplies the
energy gained by the impinging systems. The first case
occurs, for instance, in an inelastic impact where the im-
mediate neighbourhood of the point of impact is to be regarded
as the coupling system. The second case occurs in explosions.
The detailed consideration of these special relations is, how-
ever, not a part of general mechanics.

Concluding Note on the Second Book

734. In this second book our object has not been to deter-
mine the necessary relations between the creations of our own
mind, but rather to consider the experiential connections between
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the objects of our external observation. It was therefore in-
evitable that our investigations should be founded not only on
the laws of thought, but also on the results of previous experi-
ence. As the necessary contribution of experience, we thus
took from our observation of nature the fundamental law.

735. At first it might have appeared that the fundamental
law was far from sufficient to embrace the whole extent of facts
which nature offers us and the representation of which is'already
contained in the ordinary system of mechanics. For while the
fundamental law assumes continuous and normal connections,
the common applications of mechanics bring us face to face with
discontinuous and abnormal connections as well. And while the
fundamental law expressly refers to free systems only, we are also
compelled to investigate unfree systems. Even all the normal,
continuous, and free systems of nature do not conform imme-
diately to the law, but seem to be partly in contradiction to it.
‘We saw, however, that we could also investigate abnormal and
discontinuous systems if we regarded their abnormalities and
discontinuities as only apparent ; that we could also follow the
motion of unfree systems if we conceived them as portions of free

_ systems ; that, finally, even systems apparently contradicting the

fundamental law could be rendered conformable to it by admit-
ting the possibility of concealed masses in them. Although
we have associated with the fundamental law neither additional
experiential facts nor arbitrary assumptions, yet we have been
able to range over the whole domain covered by mechanics in
general. Nor does our special hypothesis prevent us from
understanding that mechanics could and must have been
developed in the manner in which it actually has developed.

In conclusion, then, we may assert that the fundamental
law is not only necessary but also sufficient to represent com-

pletely the part which experience plays in the general laws of
mechanics.






INDEX TO DEFINITIONS AND NOTATIONS

(Numbers refer to paragraphs.)

ACCELERATION, 278

Action, 613

Adiabatic motion, 560

Analytical energy, 611

Angle between two displacements, 34,43

COMMON coordinates, 452

Component of a displacement, 48

Components along the coordinates, 71,
241 ; of a force, 478 ; of an impulse,
685 ; of a vector, 241

Oolsxg?lod masses, motions, coordinates,

Conceivable motion, 257 ; position, 11

Condition of a system, 261

Configuration, 14

Connection, 109

Conservative systems, forces, 601, 662

Constraint, 385 ; in impact, 705

Continuous connection, 115

Coordinates of absolute position, 16 ; of
configuration, 16

Counter-force, 456

Counter-impulse, 679

Coupled systems, 450

Coupling, 450

Curvature of a path, 103

Cyclical coordinates, 546 ; intensity,
549 ; system, 549

DEGREES of freedom, 184

Difference between two displacements,
51; in direction between two dis-
placements, 34, 48

Differential equations of motion, 867 ; of
a system, 181

Direction of a coordinate, 69 ; displace-
ment, 24, 39; path, 99; vector
quantity, 239

Displacement, 22, 27; in direction of a
coordinate, 69; perpendicular to a
surface, 206

Displacements perpendicular to one
another, 456

Dissipative forces, systems, 663
Distance between two positions, 29

ELEMENTARY force, 475 ; impulse, 686
Equations of condition, 131 ; motion, 367
Energy, 282

Entropy, 585

Equal displacements, 25, 41
Equilibrium, 517

Forcr, 455 ; along the coordinates, 460

Force-function, 563 ; of a conservative
system, 603

Free coordinate, 189 ; system, 122

Freedom of motion, 134

GEODESIC path, 171
Guided motion, system, 481

HovLoNoMouUs system, 123

IDENTICAL displacements, 25, 41

Impossible displacements, 111

Impulse, impulsive force, 677

Inclination of two displacements, 34, 48

Internal conmection, 117; t,
885 ; do, in impact, 705

Infinitely small displacement, 54

Isocyclic motion, 560

KINETIC energy, 605

LENGTH of a path, 99 ; of a displacement,
23, 29

MAGNITUDE of a displacement, 28, 29
Machines, 581

Mass, 4, 300

Material particle, 8 ; point, 5 ; system, 121
Mathematical energy, 611

Model of a system, 418

Momentum, 268 ; along a coordinate, 268
Monocyclic system, 549

Motion, 256
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NATURAL motion, 312
Non-conservative systems, forces, 663
Normal connection, 119

ORTHOGONAL trajectory, 211

PaRALLEL displacements, 25, 41

Parameter, 549

Path-element, 98

Path of a system, 97

Perpendicular displacements to one
another, 45 ; to a surface, 208

Position, 9, 10, 54

Possible displacements, 111 ; motion,
258 ; paths, positions, 112

Potential energy, 605

QUADRATIC mean value, 28
Quantity of motion, 268

REACTION, 679
Reduced components, 71, 241

- Resultant of forces, 472

Resulting impulse, 685

PRINCIPLES OF MECHANICS

SERIES of surfaces, 209

Shortest path, 166

Space, 2, 209

Straight path, 101

Straighter element of path, 157

Straightest element of path, 152;
distance, 215 ; path, 153

Sum of two displacements, 50

Surfaces of positions, 200

System of material points, 6 ; with con-
cealed masses, 594

TIME, 2, 298
Trajectory (orthogonal), 211

UNIFORM motion, 263

VECTOR quantity, 237

Velocity, 261

Virtual displacements, 111

Visible masses, motions, coordinates, 595
Vis viva, 605

‘Work of a force, of an impulse, 510, 718




